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This paper presents a novel approach, based on the whale optimization algorithm (WOA), for channel estimation in wireless
communication systems. The proposed method provides a means to accurately estimate the wireless channel, while not
requiring the statistical characteristics of the channel. This method uses the WOA to search for the best channel statistical
characteristics toward the ultimate goal of having the smallest bit error rate (BER). The proposed approach is aimed at
enhancing the efficiency of pilot-based OFDM systems under frequency-selective fading channels used in the performance
testing of 5G New Radio gNodeB. In terms of BER and mean square error (MSE), the performance of the proposed WOA-
based channel estimation algorithm is evaluated and compared with the conventional least square (LS) and minimum mean
square error (MMSE) algorithms. The simulation results demonstrate that the proposed algorithm provides highly competitive
performance over the MMSE algorithm and significantly outperforms the LS algorithm in a variety of system configurations.
Since the requirement on prior channel statistics information makes the MMSE algorithm impractical or extremely complex,
the proposed WOA-based channel estimation algorithm should be a suitable and promising candidate for dealing with channel
estimation problems. The simulation framework is implemented in MATLAB and available upon request.

1. Introduction

In wireless communication systems, orthogonal frequency
division multiplexing (OFDM) has been the most suitable
choice of physical layer waveform to mitigate multipath
channel distortion. Although many studies propose a num-
ber of promising multicarrier waveform variants (for
instance, FBMC, GFDM, and UFMC [1]) with advanced fea-
tures, the OFDM technology remains a competitive candi-
date for future telecommunication systems (5G and
beyond) due to its distinctive performance and computa-
tional efficiency. In these wireless systems, channel estima-
tion is a crucial process to improve overall system
performance. Consequently, numerous channel estimation
techniques have been considered to accurately estimate the
channel response in frequency and time domains.

The least square algorithm (LS) is widely used for pilot-
based channel estimation due to its simplicity and indepen-
dence from channel statistics knowledge [2]. However, its

performance is significantly degraded in deep-null fading
channels. The minimum mean square error (MMSE) algo-
rithm, in contrast, offers superior performance. Unfortu-
nately, the main drawback of MMSE is that it requires
channel statistics and noise variance as prior knowledge,
which makes the algorithm inapplicable in most practical
deployment scenarios. In addition to these conventional
algorithms, deep learning-based channel estimation
approach has drawn more attention in recent works since
deep learning models are expected to capture more complex
statistical properties of practical wireless communication
systems [3–5]. However, these models need to be trained
before use, and a mismatch between training and application
scenarios could negatively impact the system’s performance.

Recently, the whale optimization algorithm (WOA) has
been proven to exhibit excellent performance in solving
challenging optimization problems in a variety of engineer-
ing domains [6–10]. Specifically, the survey in [7] examined
and categorized 82 publications that highlight the possibility
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of WOA addressing real-world issues. Motivated by this, our
ideal is to reveal the potential of WOA to improve the chan-
nel estimation process in wireless telecommunication sys-
tems. In this paper, we first suggest a novel WOA-based
channel estimation technique, then implement it, and prove
its efficiency in specific 5G channels.

1.1. Related Work. For channel estimation, the most simple
algorithm is the LS approach, but it poorly performs in
highly dynamic environments. The most effective algo-
rithm appears to be the MMSE which is usually used as
a benchmark. The study [11] proposed a robust MMSE
estimator that fully exploits the channel correlation prop-
erties in time and frequency domains. Some modified
MMSE algorithms [12, 13] were suggested to reduce the
computational complexity, while its performances barely
deteriorate. It is worth mentioning that a mismatch
between the estimated and true channel and noise statis-
tics can significantly decrease the system performance.
Therefore, it makes the MMSE impractical in such scenar-
ios. A thorough overview of the MMSE channel estimation
for OFDM and other waveforms is presented in [14]. The
study in [15] proposed a channel estimation scheme in the
time domain over fast fading channels. The key factor of
this scheme is to add zero pad before the OFDM symbol.
Another study [16] considered various pilot configurations
to provide a means for reducing the pilot-to-data ratio.
For mmWave and massive MIMO systems, the study
[17] presented a grouping-based channel estimation
approach, which exploits the sparsity of mmWave MIMO
channels to improve the estimation accuracy and reduce
the overhead. Recently, deep learning-based channel esti-
mation and equalization have become popular topics in
literature. For example, ChannelNet [4] and ReEsNet [5],
DL models yield close performance to the MMSE algo-
rithm. The majority of these articles evaluated the accu-
racy of the channel estimation using the BER and MSE
metrics. Additionally, the performance of MMSE algo-
rithm is frequently used as a benchmark for comparison.

The whale optimization algorithm has many benefits
that make it a viable optimizer for wireless communications.
In [18], the WOA algorithm efficiently resolves three issues
related to resource allocation in wireless networks. Addition-
ally, this study describes several potential WOA-based appli-
cations for multicarrier NOMA-enabled MEC systems,
interference management in UDNs, and UAV trajectory
optimization. In [19], a discrete version of WOA is used
for topology control in wireless sensor networks. As a result,
the number of active nodes is significantly reduced while
maintaining network coverage and connectivity characteris-
tics. In order to secure the data traffic in wireless mesh net-
works, the study in [20] employed a modified WOA to
improve the attach detection ratio in intrusion detection sys-
tems. Similarly, an improved binary WOA was proposed in
[21] to increase the classification accuracy and dimensional
reduction in the feature selection of intrusion detection.
Especially for antenna design, the work in [22] presented
an antenna optimized based on the WOA, which is suitable
for the WiFi 5GHz frequency band.

As aforementioned, the WOA has found significant appli-
cations across a wide range of fields. Indeed, theWOAhas dem-
onstrated higher performance than recent metaheuristic
techniques [6, 7]. For example, in comparisonwith other swarm
intelligence techniques, it is robust and simple to implement.
Moreover, fewer control parameters are needed for the method;
practically, only one parameter (the time interval) needs to be
adjusted. Despite the WOA’s superior performance, we are
not aware of any comprehensive research dedicated to revealing
the potential of WOA to improve the channel estimation pro-
cess in wireless telecommunication systems.

1.2. Our Contribution. Our approach of utilizing the whale
optimization algorithm for channel estimation has two signifi-
cant advantages. Firstly, unlike the MMSE algorithm, it does
not require prior information on channel statistics. Addition-
ally, compared to deep learning-based channel estimation
approach with a training procedure, the WOA-based channel
estimation is more flexible in terms of deployment possibilities.

The main contributions of our work are summarized as
follows:

(1) We present a thorough solution to the pilot-based
channel estimation problem based on the whale
optimization algorithm (namely, WOA-CE), which
can enhance the performance of OFDM systems
under frequency-selective fading conditions

(2) We conducted extensive experiments on the WOA-
based channel estimation approach to analyze and
compare its performance with the conventional LS
and MMSE channel estimation algorithms in a variety
of scenarios. Specifically, we evaluated overall system
performance and channel estimation accuracy in terms
of bit error rate (BER) and the mean square error
(MSE), respectively, in the 5G NR TDLC-300 fading
channel [23]. In addition, our simulation framework
considered various modulation constellations (QPSK,
16QAM, and 256QAM) and three pilot patterns. The
MATLAB simulation framework is available upon
request from https://link.uit.edu.vn/WOA-CE

According to the statistical results from our simulation
framework, the proposed WOA-based channel estimation
algorithm outperforms the conventional LS algorithm and
is comparable to the MMSE algorithm in terms of BER
and MSE for considered scenarios.

The remainder of the paper is organized as follows: Sec-
tion 2 provides a brief survey of the channel estimation
background and conventional algorithms for pilot-based
OFDM systems. Section 3 presents the proposed channel
estimation approach based on the whale optimization algo-
rithm. In Section 4, simulation results and discussion are
presented. Finally, Section 5 concludes the paper.

2. Channel Estimation Background

In this section, channel estimation methods in the OFDM
system are presented. OFDM has a frame structure in which
a resource grid x is conveyed on K frequency-domain
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subcarriers and L time domain OFDM symbols. K × L
complex-valued data and pilot symbols are included in the
resource grid. The resource grid is transformed into a base-
band signal at the transmitter using the inverse discrete Fou-
rier transform (IDFT). A multipath channel with additive
white Gaussian noise damages the transmitted signal. The dis-
crete Fourier transform (DFT) is utilized at the receiver to cre-
ate a received resource grid y. The element of y is stated as
follows for the kth subcarrier and lth OFDM symbol:

y = diag xð Þh + n: ð1Þ

Channel estimation is an important process where the fre-
quency channel response h is estimated to use in the next stages
for equalizing the distorted resource grid y. To estimate the
channel, a part of the resource grid is used for inserting pilot
symbols. Figure 1 illustrates a comb-type pilot pattern with 1/
Nf pilot density. This pilot pattern has been introduced for fast
fading estimation when the channel varies even inside one
OFDM block. Firstly, channel response values at pilot positions,
denoted as hp, are estimated. Then, the whole channel response
matrix h is obtained from hp by different algorithms. To
increase the accuracy of the channel estimate process while
keeping a respectable ratio of pilot symbols to the total, the
number of pilot symbols and their placements should be care-
fully determined depending on the deployment situations.

Because of its simplicity, the LS estimator is frequently
employed in practice. The LS method may be used to deter-
mine the frequency channel response at pilot points in the
manner described below:

hpLS = XH
p X

� �−1
XH

p yp, ð2Þ

where yp and Xp = diag ðxpÞ are the elements of received
resource grid y and transmitted resource grid X, respec-
tively, at pilot positions.

The more advanced algorithm for channel estimation is
MMSE which exploits knowledge of channel statistics. In
this algorithm, the LS estimated values hpLS are multiplied
with a weight matrix W to provide the MMSE estimated
values hMMSE as follows:

hMMSE =WhpLS, ð3Þ

where W is calculated as in [24] using the channel autocor-
relation matrix at pilot positions and the cross-correlation
matrix between channel LS estimated values and the true
channel values. It is shown in [13] that the MMSE algorithm
provides better performance than LS algorithm. Since the
MMSE technique is computationally intensive and necessi-
tates more channel statistics data, it is challenging to execute
in practice.

W = Rhp Rpp +
β

SNR I
� �−1

: ð4Þ

3. Proposed WOA-Based Channel Estimation

In this section, we describe a novel method for applying the
WOA to improve the accuracy of pilot-based channel esti-
mation in wireless systems. This method is a promising can-
didate, since it provides superior channel estimation
accuracy while not requiring the statistical characteristics
of the channel.

3.1. Whale Optimization Algorithm. The solution to optimi-
zation problems has been studied for a long time and
appears to be a crucial issue not only in mathematics but
also in other scientific and technical disciplines. Many algo-
rithms can give global optimal results for all nonlinear prob-
lems such as dynamic programming, branch-and-bound
(BnB), and so on, but the calculation is very complicated.
Metaheuristic optimization algorithms are becoming more
and more popular and efficient in technical applications;
they are based on fairly simple concepts inspired by nature
by imitating biological or physical phenomena. Swarm tech-
niques that mimic the social behavior of groups of animals
have proven to be very dominant with physics and
evolution-based algorithms. Therefore, swarm optimization
algorithms work very well on communication applications
requiring high speed.

Whale optimization algorithm (WOA) is a novel nature-
inspired metaheuristic optimization algorithm that mimics
the social behavior of humpback whales inspired by a spiral-
ing bubble-net strategy [6]. WOA is tested by the author
with 29 mathematical optimization problems and 6 struc-
tural design problems for optimization results and proved
that WOA is very competitive compared with modern
extreme search algorithms.

First, we define the optimization problem with the objec-
tive function as the mapping f : ℝn ⟶ℝ (f is also called
fitness), in which n is the number of dimensions of the var-
iable and XðtÞ is the position vector of the object under con-
sideration at time t. The problem needs to determine the
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Figure 1: A comb-type pilot pattern with 1/Nf pilot density.
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optimal position, through 3 methods of updating weights to
simulate the behavior of humpback whales:

X∗ = arg min
X∈ℝn

f Xð Þ: ð5Þ

Encircling prey (exploitation phase): this is the stage
when the whales have identified a target and are sur-
rounded to attack the prey. Since any position in space,
the WOA algorithm assumes that the current best solu-
tion is the target prey (or close to the optimal position).
Once the best-looking member is identified, other mem-
bers will try to update their location in the direction of
the best search. This behavior is represented by the fol-
lowing equation:

X t + 1ð Þ =X∗ tð Þ + A:D, ð6Þ

where Xðt + 1Þ is the next position vector and X∗ðtÞ is
the current best position vector. Vector D (same dimen-
sion as X) indicates the direction to move from the cur-
rent position:

D = C:X∗ tð Þ −X tð Þj j, ð7Þ

where C is the random value in the interval ½0, 2� and j:j
is the absolute value of each element. The A value in (6)
represents the degree of proximity to the prey and is cal-
culated as follows:

A = 2:a:r − a, ð8Þ

where r is a random value in the ½0, 1� interval and a
decreases linearly from 2 to 0 during the iteration (in
both the exploration and exploitation phases), which can
be determined through the following equations:

a = 2: 1 − t
tmax

� �
: ð9Þ

Therefore, the simulation surrounds the prey as it gets
closer to the end of the iteration (the value of a
decreases), the amplitude of oscillation A will decrease,
and the information about the prey will be detailed, find-
ing out the location more exactly.

Bubble-net attacking method (exploitation phase): the
updated position will follow a spiral instead of a straight
line as is the case with siege attacks. First, calculate the
distance D′ between the whale located at X and the prey
located at X∗.

D′ = X∗ tð Þ −X tð Þj j: ð10Þ

A spiral equation is then generated between the
whale’s position and the prey to mimic the humpback’s
twisting motion as follows:

X t + 1ð Þ =X∗ tð Þ +D′:ebl cos 2πl, ð11Þ

where b is the constant to determine the shape of the log-
arithmic spiral and l is the random number in ½−1, 1�.
Humpback whales that swim around their prey in a con-
stricting circle and along a spiral are better able to encircle
them instead of heading directly to the current prey loca-
tion. To model the concurrent behavior between the two
mechanisms, it is assumed that there is a 50% probability
to choose between a siege mechanism p < 0:5 or a spiral
model p ≥ 0:5 for updating the position of the whale dur-
ing optimization (p is a random value in ½0, 1�).

Search for prey (exploration phase): the exploration phase
approach is similar to the prey encirclement phase based on
the variation of the A value. If the absolute value is greater
than 1, then force the foraging whale to move away from a
certain member. The direction of movement of the whale
during the search phase is

D = C:Xrand tð Þ −X tð Þj j, ð12Þ

where Xrand is a random position from a member. Whales
randomly search each other’s positions according to the fol-
lowing equation:

X t + 1ð Þ =Xrand tð Þ + A:D: ð13Þ

3.2. Apply WOA to Channel Estimation. An optimization
algorithm is used to search the statistical characteristics of
the channel. Schools of whales move in n-dimensional space,
where n is the number of channel features to know about the
channel and noise. Each agent position represented a certain
channel, and noise is updated over time by the WOA to
reach the best position expected to be close to the true chan-
nel. The pseudocode of the original WOA algorithm is
described in [6]. The definition of the best position is pre-
sented in the following section.

MMSE requires knowing noise variance and the cross-
correlation matrix between the true channel and temporary
channel estimated in the frequency domain. Therefore, the
number of properties to know in advance is too large for
the whales to perform well if applied WOA directly. Not to
mention, this also increases computational complexity and
time. We propose to use WOA to search for some statistical
characteristics, thereby deducing the autocorrelation matrix
of the channel.

The elements of Rhp and Rpp in Equation (4) can be
obtained as follows [2]:

E hk,l, h∗k′,l ′
� �

= r f k − k′
� �

rt l − l′
� �

: ð14Þ

In an exponentially decreasingmultipath power delay pro-
file (PDP), the frequency-domain correlation r f ðkÞ is given as

r f kð Þ = 1
1 + j2πτrmskΔf

, ð15Þ

where Δf is the subcarrier spacing and τrms is the root mean
squared (RMS) delay spread. The time domain correlation is
calculated by the first kind of 0th-order Bessel function:
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rt lð Þ = J0 2πf mlTsym
� 	

, ð16Þ

where f m is the maximum Doppler frequency and Tsym is the
OFDM symbol duration. From the requirement to know a lot
of information about the channel, we now only need to know a
few characteristics such as delay spread, maximum Doppler
shift frequency, and noise power.

3.3. Define Objective Function. In this section, the optimal
position is determined for the whales to look for. Ideally,
the best position is the actual channel and noise power.
Unfortunately, at the receiver, the whales are completely
blind to the channel, so they cannot tell if the current posi-
tion is close to the real propagation. We try to define a cost

function that moves the swarm toward the ultimate goal of
having the smallest BER.

While moving, each position of the whales can correspond
to a constellation (from channel equalization). A position is
considered better if the constellation corresponding to that
position has a smaller dispersion (Figure 2). To determine
the variance of the symbols after equalization, we cluster the
signal into K clusters (K depends on the modulation type,
e.g., 4 for QPSK) and use the distance σ2 of that signal to the
reference signal to represent dispersion as follows:

σ2 SNR, trms, f mð Þ = E Xest −Xrefk kf g, ð17Þ

where Xest and Xref are the estimated signal and the refer-
ence signal, respectively.
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Figure 2: The dispersion of the constellation 16QAM (left is better).

Initialize the feasible propagation characteristics Pi = ði = 1, 2,⋯,NÞ
for each iteration

for each search agent
Update a, A, C, l and p
if ðp < 0:5Þ

if ðjAj < 1Þ
Update the position of the current search agent by (6)

else if ðjAj ≥ 1Þ
Select a random search agent Prand
Update the position of the current search agent by (13)

end
else if ðp ≥ 0:5Þ

Update the position of the current search by (11)
end

end
Check if any search agent goes beyond the search space and amend it
Estimate channel Hi using (14) and propagation characteristics Pi

Equalize channel Ŷi

Clustering Ŷi based on modulation type
Calculate the fitness of each search agent as cluster variance
Update X∗ if there is a smaller variance

end
return H∗

Algorithm 1: Pseudocode of the WOA algorithm for channel estimation.
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The optimization problem now can be written as

SNR∗, τ∗rms, f ∗m = argminσ2 SNR, τrms, f mð Þ,
s:t 0 ≤ SNR ≤ 40,

0 ≤ τrms ≤ 100,
0 ≤ f m ≤ 300,

ð18Þ

The pseudocode of WOA-based channel estimation
algorithm is presented in Algorithm 1. The parameters of
the WOA-CE model are listed in Table 1.

3.4. Complexity and Convergence Analysis. The complexity
of the WOA-based estimator is greater than that of the
ideal LS and MMSE estimators. As previously stated, the
LS estimator is very simple to perform, leading to rela-
tively poor results. The ideal MMSE, although very effi-
cient, cannot be performed due to the assumption of
channel correlation and known noise variance. In practical
applications, these quantities are fixed or estimated by
some method, possibly in an adaptive response manner.
This has increased the complexity of the MMSE estimator
and reduced the performance compared to the ideal
MMSE many times over. Opposed to the ideal MMSE esti-
mator, our proposed method ensures feasibility when
applied because it does not need a preestimation step of

noise power and a large correlation matrix. Specifically,
the complexity of the algorithm is OðN:tmax:N

2
fftÞ, propor-

tional to the number of swarms N and the number of iter-
ations tmax. A useful point of this algorithm is that the
migration of swarm members is independent so it can be
done in parallel when implemented on hardware, so the
algorithm can greatly reduce the complexity to Oðtmax:
N2

fftÞ if parallel computation is applied.
We conduct an experiment to investigate the conver-

gence of the whale optimization algorithm, as well as com-
pare it with other optimization algorithms. When
compared with general nonlinear programming algorithms,
the method we choose can give faster convergence results,
in other words, faster processing. This is suitable for the
problem in wireless communications, although it does come
with a slight trade-off in accuracy. When compared within
the same group of smart search algorithms, it is challenging
to claim that one search is better than another due to the
randomness and convexity factors of a particular function.
There are two important features of convergence: the num-
ber of iterations to converge and the value of the objective
function upon convergence. However, due to the computa-
tional time limitation when estimating the channel, we
investigated the optimal value after a specific number of

Table 1: Parameters of the WOA-CE model.

Parameters Value

Dimension 2

Number of agent 8

Max number of iterations 10

Upper bound [40 100]

Lower bound [0 20]

Initialization distribution Uniform

0.115 Convergence of the optimization algorithm

PSO
WOA

0.11
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Figure 3: Convergence graph of the proposed WOA-based method
compared with the PSO-based method.

Table 2: Tapped delay line model of 5G NR TDL-C300 channel
(delay spread = 300 ns).

Tap Delay (ns) Power (dB) Fading distribution

1 0 -6.9 Rayleigh

2 65 0.0 Rayleigh

3 70 -7.7 Rayleigh

4 190 -2.5 Rayleigh

5 195 -2.4 Rayleigh

6 200 -9.9 Rayleigh

7 240 -8.0 Rayleigh

8 325 -6.6 Rayleigh

9 520 -7.1 Rayleigh

10 1045 -13.0 Rayleigh

11 1510 -14.2 Rayleigh

12 2595 -16.0 Rayleigh

Table 3: Simulation parameters of the OFDM system.

Parameters Value

FFT size 4096

CP length 1024

Pilot arrangement Comb

Pilot density 1/3, 1/6, and 1/12

Modulation QPSK, 16QAM, and 256QAM

Subcarrier spacing 30 kHz

Channel model TDL-C300

Noise model AWGN

SNR range 0–30 dB (1 dB step)
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iterations. The convergence graph below is the average of
the experiments that we have statistics. From Figure 3,
we see that the algorithms start to converge from about
the 6th iteration. This is a relatively small number that
can meet the speed requirements. Also at the time of con-
vergence it is easy to see that WOA gives the most opti-
mal value even though the previous iterations, the
algorithms are still competing for the best method. We
want to emphasize that the comparison of swarm optimi-
zation algorithms is being placed on a specific situation,
not on a general function.

4. Results and Discussion

4.1. Simulation Environment. To demonstrate our proposal,
we consider a physical layer simulation model by MATLAB
with one transmitting and one receiving antenna (SISO)
configuration. The simulation data and pilots are randomly
generated following a uniform distribution. Modulation
types including QPSK, 16QAM, and 256QAM were used
for both the data and the pilot signal in this experiment.
The pilots are arranged in comb fashion with Nf

(Figure 2) of interest being 3, 6, and 12. In other words,

0 5 10 15 20 25 30 35
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10–2
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100
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True Channel

7 dB

Figure 4: BER performance for the LS, MMSE, WOA-CE, and ideal estimators with 16QAM constellation and 1/6 pilot density.
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Figure 5: MSE for the LS, MMSE, and WOA-CE with 16QAM constellation and 1/6 pilot density.
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the pilots are mapped equally spaced on the resource grid
with a pilot density of 1/3, 1/6, and 1/12.

Regarding the OFDM transmission system, the orthogo-
nal signals are implemented by 4096-point discrete Fourier
transform (DFT) and the guard interval is inserted by 1024
sample length cyclic prefix (based on the 5G NR standard).
Subcarrier spacing is 30 kHz.

For channel modeling, multipath fading propagation
conditions are implemented by a tapped delay line model.

We use the TDL-C300 channel model, suggested for signal
reception at the 5G NR gNodeB base station, with 12
channel paths and a delay spread of 300ns. The tapped
delay line model of 5G NR TDL-C300 channel is
described in Table 2.

To provide the system performance in various deploy-
ment scenarios, we consider a wide range of SNR values of
0 dB to 30 dB with a 1 dB step. Simulation parameters of
the OFDM system are listed in Table 3.

LS with QPSK
MMSE with QPSK
WOA-CE with QPSK

LS with 256 QAM
MMSE with 256 QAM
WOA-CE with 256 QAM

0 5 10 15 20 25 30

SNR (dB)

10–3

10–2

10–1

100

BE
R

Figure 6: BER performance for the LS, MMSE, and WOA-CE estimators with QPSK and 256QAM constellations for 1/6 pilot density.

0 5 10 15 20 25 30

SNR (dB)

10−3

10−2

10−1

100

BE
R

LS with 1/3 pilot density
MMSE with 1/3 pilot density
WOA-CE with 1/3 pilot density
LS with 1/12 pilot density
MMSE with 1/12 pilot density
WOA-CE with 1/12 pilot density

Figure 7: BER performance for the LS, MMSE, and WOA-CE estimators with 16QAM constellation for 1/3 and 1/12 pilot density.
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To demonstrate the efficiency of our proposed approach
WOA-CE, we have compared its performance with existing
competitors (LS and MMSE estimators) in terms of BER
and MSE which are defined as follows:

MSE = E Hest −Htruek k2� �
, ð19Þ

where BER indicates the overall system performance and
MSE is a measurement for channel estimation accuracy.

4.2. Results and Analysis. Figure 4 presents the BER perfor-
mance of considered channel estimators including LS,
MMSE, and WOA-CE in a configuration of 16QAM and
1/6 pilot density. In addition, the BER performance for ideal
channel estimation (i.e., full channel state information is
obtained) is also presented and serves as a benchmark of
the best but impractical case. The results demonstrate that,
at a typical value of BER = 10−2, the proposed WOA-CE
has comparable performance with the MMSE and signifi-
cantly outperforms the LS algorithm. Moreover, compared
to the ideal channel estimation case, the WOA-CE perfor-
mance is worse but the difference is negligible.

In Figure 5, the MSE for the LS, MMSE, and WOA-CE
estimators is depicted. In general, the MMSE and WOA-
CE curves continue to be close to one another and apart
from the LS curve. More interestingly, we can observe that
the performance of MMSE and WOA-CE estimators
exhibits a slight difference depending on the SNR values.
Specifically, in the high SNR area (above 20 dB), the
WOA-CE performs better than the MMSE, whereas in the
low SNR area, the situation is the opposite. The reason is
that the objective function is not defined to reduce MSE
but tries to lower BER by making the received signal after
channel equalization “most clearly” clustered. At low SNR
conditions, the signal is heavily affected by noise, so it is
almost impossible to cluster. This means that the objective
function does not work effectively when the noise is too
large. On the contrary, when the SNR increases, the signal
is relatively distributed in clusters, so that the whales can
find a good enough position for the signal after equalization
to be closest to the ideal constellation. This is demonstrated
by the results in Figure 5.

To examine the influence of different modulation con-
stellations on the BER performance of the proposed WOA-
CE algorithm, we conducted more experiments on the QPSK
and 256QAM constellations (in addition to the 16QAM case
in Figure 4). The results are presented in Figure 6. It is dem-
onstrated that our proposed WOA-CE algorithm continues
to provide competitive performance over the MMSE algo-
rithm within a wide range of modulation orders.

Another aspect that needs to be considered is the trade-
off between the pilot density and the BER performance. The
BER performance for various pilot densities is presented in
Figure 7. It is shown that as the pilot density decreases (from
1/3 to 1/12), the BER performance of WOA-CE and MMSE
algorithms degrades as well, but not dramatically (about
3 dB at BER = 10−2). It offers a possibility of reducing pilot
overhead for better bandwidth efficiency without noticeably
worsening BER performance. In contrast, the LS algorithm is

heavily affected by the pilot density value. It is interesting
that the LS estimator with 1/3 pilot density works effectively,
and it might be a rival with MMSE and WOA-CE algo-
rithms. However, with 1/12 pilot density, the LS estimator
is seriously inaccurate since its curve is unable to reach the
level of BER = 3:10−2 for any SNR values.

5. Conclusion

This paper presented a novel approach, based on the whale
optimization algorithm, for channel estimation in wireless
communication systems (WOA-CE). For pilot-based OFDM
systems, the performance of the proposed WOA-CE algo-
rithm has been evaluated and compared with the most pop-
ular channel estimation algorithms (LS and MMSE) in the
5G NR TDLC-300 frequency-selective channel. The BER
and MSE have been used as performance metrics. Moreover,
we conducted experiments in various system configurations
including three constellations (from low to high modulation
orders: QPSK, 16QAM, and 256QAM) and three pilot den-
sity values (1/3, 1/6, and 1/12).

The simulation results show that the WOA-CE algo-
rithm provides highly competitive performance over the
MMSE algorithm and significantly outperforms the LS algo-
rithm. Since the requirement for prior channel statistics
information makes the MMSE algorithm impractical or
extremely complex, the proposed WOA-CE algorithm
should be a suitable candidate for dealing with channel esti-
mation problems in OFDM-based wireless systems. For
future directions, the performance of the proposed WOA-
CE can be improved and evaluated in the presence of chan-
nel coding and MIMO configurations.

Data Availability

The simulation framework is implemented in MATLAB and
available upon request from https://link.uit.edu.vn/WOA-
CE.
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