
Research Article
Efficient Secure Computation from SM Series Cryptography

Yibiao Lu ,1,2 Zecheng Wu ,1,2 Bingsheng Zhang ,1,2 and Kui Ren 1,2

1ZJU-Hangzhou Global Scientific and Technological Innovation Center, China
2Zhejiang University, China

Correspondence should be addressed to Bingsheng Zhang; bingsheng@zju.edu.cn

Received 26 July 2022; Revised 22 November 2022; Accepted 15 April 2023; Published 17 May 2023

Academic Editor: Nan Li

Copyright © 2023 Yibiao Lu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The wireless network suffers from many security problems, and computation in a wireless network environment may fail to preserve
privacy as well as correctness when the adversaries conduct attacks through backdoors, steganography, kleptography, etc. Secure
computation ensures the execution security in such an environment, and compared with computation on the plaintext, the
performance of secure computation is bounded by the underlying cryptographic algorithms and the network environment between
the involved parties. Besides, the Chinese cryptography laws require the cryptographic algorithms that appeared in the commercial
market to be authorized. In this work, we show how to implement oblivious transfer (OT), an important primitive in secure
multiparty computation (MPC), using the Chinese government-approved SM2 and SM3 algorithms. The SM2 algorithm is based
on the elliptic curve cryptography and is much faster than the discrete logarithm-based solutions. Moreover, by adopting the
standard OT extension technique, we can extend the number of OTs efficiently with one more round of communication and
invocations to the SM3 and SM4 algorithms. The OT primitive can be used in the Beaver multiplication triple generation and
other MPC protocols, e.g., private set intersection. Therefore, we can utilize the SM series cryptography, specifically, the SM2, SM3,
and SM4 algorithms, to build highly efficient secure computation frameworks which are suitable for the wireless network
environment and for commercial applications in China. The experimental evaluation results show that our protocols have
comparable performance to existing protocols; specifically, our protocols are quite suitable for bad network environments.

1. Introduction

Wireless network (WLN) enables devices to communicate
with each other without cable connections, and it is a major
component of the modern Internet. With the advancement
of the Internet of things (IoT) technique, a vast amount of
wireless networks are being deployed [1]. However, the wire-
less network can be quite vulnerable [2, 3], an adversary may
eavesdrop on or alter the communication in the network.
When several parties want to perform a joint computation
in a wireless network with potential adversaries, the correct-
ness of the computation and the privacy of inputs can be
easily breakdown. Although efforts have been made to avoid
or mitigate the security threat in the wireless network [4–6],
there are still a lot of security issues. Therefore, we need
privacy-enhancing technologies to ensure security in such
a network environment.

In this work, we leverage a cryptographic technique
called secure multiparty computation (MPC) [7, 8] to con-
struct an efficient and provably secure computation frame-
work that protects parties’ privacy in a network potentially
controlled by the adversary. The goal of MPC is to design
protocols that enable several mutually untrusted parties to
jointly compute a function on their private inputs without
revealing anything except for the function output. Typically,
the computational security of a MPC protocol relies on some
computational or setup assumptions. Therefore, if there is
an adversary that can break the security of the protocol,
either the adversary has unbounded computation power or
the computational assumption does not hold.

We focus on the oblivious transfer (OT) primitive, which
is complete for the MPC computation [9] and is a funda-
mental building block for many MPC protocols. Naor and
Pinkas [10] provide the first efficient OT protocol, and Chou

Hindawi
Wireless Communications and Mobile Computing
Volume 2023, Article ID 6039034, 26 pages
https://doi.org/10.1155/2023/6039034

https://orcid.org/0000-0002-7015-7148
https://orcid.org/0009-0004-0704-998X
https://orcid.org/0000-0002-2320-9582
https://orcid.org/0000-0003-3441-6277
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6039034


and Orlandi [11] propose the simplest OT construction.
Specifically, in [12], Masny and Rindal initiate the study of
a new OT primitive called endemic OT. The endemic OT
is weaker than commonly used OT in the sense that a cor-
rupted party is able to control its output message, and the
same definition has also been considered by Garg et al.
[13]. As demonstrated by Masny and Rindal [12], endemic
OT can be constructed using proper key agreement proto-
cols in the programmable random oracle model. Later,
McQuoid et al. [14] improve the efficiency of 1-out-of-N
endemic OT protocol using a programmable-once public
function (POPF). They also notice some security issues in
the batch setting and provide a proper treatment in [15].

In the implementation, the main factor affecting the per-
formance of a MPC protocol is the involved cryptographic
primitives, whose performance depends on the underlying
cryptographic assumptions. A wide range of computational
MPC protocols are built on asymmetric-key cryptosystems,
and as for asymmetric-key cryptography, the Rivest-
Shamir-Adleman (RSA) based on integer factorization and
elliptic curve cryptography (ECC) based on discrete loga-
rithm are two of the most important algorithms being used.
Evaluation results show that ECC has great advantages over
RSA in both computation time [16] and resource consump-
tion [17]. In 2010, the Chinese State Cryptography Adminis-
tration announced the public key cryptographic algorithm
SM2 [18] and several other SM series algorithms, which
are based on the elliptic curve cryptography. According to
the Chinese cryptography laws [19], it is mandatory to adopt
cryptography algorithms which have been authorized for
commercial use in China, e.g., the SM algorithms.

1.1. Our Contribution. The contributions of this work can be
summarized as follows. First, we construct an endemic OT
protocol based on the SM2 key agreement protocol. More-
over, we build several MPC protocols on the top of the
endemic OT protocol, including a two-party secure compu-
tation protocol on the Boolean circuits, a multiparty party
secure computation protocol on arithmetic circuits, and a
two-party private set intersection (PSI) protocol. Our con-
structions consider both efficiency and availability and only
use the SM series cryptography. The security of our proto-
cols can be proved in the random oracle model and in the
public key infrastructure (PKI) setting. Since a PKI is used,
the parties can communicate without the secure channel
functionality, and in implementation, the parties can trans-
mit messages without the TLS protocol. To the best of our
knowledge, we are the first to propose a secure computation
framework that complies with the Chinese national stan-
dards and regulations.

2. Related Work

There have been some secure computation solutions for the
wireless network. We can categorize them into low-
communication MPC and hardware-based computation.

Garay et al. [20] investigated the feasibility of designing pro-
tocols with sublinear communication complexity. Their work
enables large-scale secure computation in a communication-

restricted environment. Moreover, Gentry et al. proposed a
communication model called YOSO [21], in which each party
only sends one message to others. In YOSOMPC, only a small
fraction of parties execute and communicate in each round;
therefore, its communication complexity is also sublinear to
the total amount of involved parties. Fully homomorphic
encryption is a widely used primitive in low-communication
MPC protocol design. Asharov et al. [22] constructed a MPC
protocol using threshold FHE. The proposed protocol only
needs two or three communication rounds depending on the
underlying assumption, and its communication cost is inde-
pendent of the function to be computed. López-Alt et al.
[23] and Mukherjee and Wichs [24] considered to use
multikey FHE and a third-party untrusted server in their con-
struction, the proposed protocol achieves a minimal commu-
nication complexity which is independent of the function
and the number of parties. All these FHE-based protocols have
the property that the communication size only depends on the
input/output size; however, using FHE dramatically increases
the computation burden. Another way to reduce communica-
tion in the protocol execution is to offload the major commu-
nication workload to a preprocessing phase. Damgård et al.
proposed the celebrated SPDZ computation framework [25],
in which a bunch of authenticated triples are generated in
the preprocessing phase and consumed in the online phase.
The authenticated garbling protocols proposed by Wang
et al. [26, 27] also use authenticated triples to speed up the
online computation. Specifically, these garbled circuit-based
protocols have constant round complexity, which makes them
more suitable for the wireless network. Carter et al. [28]
noticed that a remote server can be used to instantiate the pre-
processing phase. However, in such a server-aided setting, the
adversaries are allowed to corrupt the cloud server.

Hardware-based computation has many things in com-
mon with the server-aided computation, and the efficiency
of the protocols varies with the parties’ trust to the hardware.
Since the hardware can have a fast connection with the
computing parties, hardware-based computation is typically
much faster than other solutions [29–31]. Generally,
hardware-based computation uses a hardware token or
trusted hardware issued by the parties or a hardware manu-
facturer, and the parties can use the hardware to generate
preprocessing information or even directly compute the
function. These hardware-based protocols assume that the
hardware is tamper-resistant or tamper-proof, while in prac-
tice, there have been works that successfully break the secu-
rity of some commonly used hardware [32, 33].

3. Preliminaries

3.1. Notations. Throughout this paper, we use the following
notations and terminologies. Let λ be the computational
security parameter, and μ be the statistical security parame-
ter. Denote a binary matrix with a rows and b columns as
f0, 1ga×b. When A and B are two-bit strings, AkB is the con-
catenation of them. When A is a bit string, a vector, or an
array, A½i� is its i-th element. Denote the set fa, a + 1,⋯, bg
by ½a, b�, let ½b� denote ½1, b�, and let ∅ denote the empty set.
When a set A = faigi∈½n� is used, we assume the elements are

2 Wireless Communications and Mobile Computing



arranged by the indexes as a1,⋯, an. When A is a set, a⟵ A
stands for sampling a uniformly at random from A, and jAj
stands for the size of A in terms of the number of elements.
WhenA is a matrix,Ai denotes its i-th column, andAj denotes
its j-th row. When A is a randomized algorithm, y⟵ AðxÞ
stands for running A on input x with a fresh random coin r;
when needed, we denote y≔ Aðx ; rÞ as running A on input
x with the explicit random coin r. Let polyð·Þ and neglð·Þ be
a polynomially bounded function and negligible function,
respectively. We assume each party has a unique PID. For
readability, we refer Pi as the PID for the party Pi. We abbre-
viate “probabilistic polynomial time” as PPT and “interactive
Turing machine” as ITM.

3.1.1. Elliptic Curve Cryptography Notation. In this work, we
work on the finite field Fp, and the elliptic curve E is defined
by two elements a, b ∈ Fp. The set of all the points on E is
denoted as Epða, bÞ. g≔ ðxg, ygÞ is the base point of E with
order n, and h≔ jEpða, bÞj/n is the cofactor.

3.2. Security Definition. Our security model is based on the
universal composability (UC) framework [34], which lays
down a solid foundation for designing and analyzing proto-
col secure against attacks in an arbitrary network execution
environment (therefore, it is also known as a network-
aware security model). We refer to the original work [34]
for details.

Roughly speaking, in the UC framework, protocols are
carried out over multiple interconnected machines; to cap-
ture attacks, a network adversary A is introduced, which is
allowed to partially control the communication network
and corrupt some machines (i.e., have full control of all
physical parts of some machines). Then, a protocol Π is a
UC-secure implementation of a functionality F , if it satisfies
that for every network adversary A attacking an execution of
Π, there is another adversary S—known as the simulator—-
attacking the ideal process that uses F (by corrupting the
same set of machines) such that the executions of Π with
A and that of F with S make no difference to any network
execution environment Z .

3.2.1. The Ideal World. In the ideal world, P1,⋯, PN only
communicate with an ideal functionality F f

mpc during the

execution. As depicted in Figure 1, F f
mpc waits for each party

to provide input, and when all parties’ inputs have been
received, it computes the function ðy1,⋯, yNÞ⟵ f ðx1,⋯,
xNÞ and sends the output yi to the party Pi, for i ∈ ½N�.
Besides, the functionality F f

mpc interacts with the simulator

S . When a party Pi sends its input xi to F f
mpc, S receives a

notification ðComputeNotify, sid, PiÞ. Before F f
mpc outputs,

it sends ðOutput, sidÞ to ask for permission of S , and it only
sends yi to Pi if a ðDeliver, sid, PiÞ is received.

3.2.2. Adversary Models. There are two main adversary
models. A semihonest adversary follows the protocol
description and a malicious adversary can deviate from the
protocol description arbitrarily. Both adversaries try to help

the environment distinguish between the ideal world and
the real world by learning more information from the pro-
tocol execution.

3.2.3. Model of Protocol Execution. In the protocol execution,
an environment Z provides inputs to the parties and
receives outputs from them. Moreover, it can interact with
the adversary A freely. At the end of the protocol,Z outputs
a binary variable. Let execΠ,A ,ZðiÞ denote the output variable
of Z in an execution of protocol Π with environment Z
and adversary A on input i, and execΠ,A ,Z denote the
ensemble fexecΠ,A ,ZðiÞgi∈f0,1g∗ . We use execFΠ,A ,Z when

protocol Π is in the F-hybrid model, i.e., F can be invoked
in Π. We slightly abuse notation and use execF,S ,Z for the
ideal execution.

3.2.4. Random Oracle. A random oracle [35] is an idealized
hash function that can be publicly accessed. In the random
oracle model, the random oracle maintains a table of the
previous queries. For a query with input x, the random ora-
cle first checks if x is recorded. For an unrecorded x, the ran-
dom oracle chooses an element from its output domain
uniformly at random and responds with this element, and
it then records x and the corresponding response; for a
recorded x, the random oracle simply responds with the
recorded response.

3.2.5. Public Key Infrastructure. A public key infrastructure
(PKI) links a party’s public identity with its public key. In
this work, we use a PKI to guarantee the authenticity and
validity of a party’s public key and further ensure the secu-
rity of the communication. In such a PKI setting, the parties
can communicate with each other without the requirement
of an underlying secure channel functionality [36]. In imple-
mentation, we allow the parties to send messages in an inse-
cure network environment that may be eavesdropped on or
tampered with without the TLS protocol.

3.3. One-Round Key Agreement Protocol. Key agreement
(KA) protocols allow two parties A and B to jointly establish
a key known to no one else. We use a similar notation as in
[14], which considers two-round key agreement protocols,
while we focus on one-round key agreement protocols. We
first provide an illustrative example that is provided in
Figure 2, and the protocol involves the following parameters:

(i) KA:R is the set of randomness used by the parties

(ii) KA:Msg1 and KA:Msg2 are A’s message generation
function and B’s message generation function,
respectively

(iii) KA:M1 and KA:M2 are the set of A’s protocol mes-
sage and the set of B’s protocol message, respectively

(iv) KA:Key1 and KA:Key2 are A’s key generation func-
tion and B’s key generation function, respectively

(v) KA:K is the set of output keys

3Wireless Communications and Mobile Computing



In a one-round key agreement protocol Π, party A picks
random tA ⟵KA:R and computes mA ⟵KA:Msg1ðtAÞ,
and it sends mA to B; in the meanwhile, party B also picks
random tB ⟵ KA:R and computes mB ⟵KA:Msg2ðtBÞ,
and it sends mB to A. At the end, A and B establish the same
key by computing kA ⟵KA:Key1ðtA,mBÞ and kB ⟵KA:
Key2ðtB,mAÞ, respectively. Throughout the protocol, the
computational security parameter λ is used implicitly as a
parameter of the algorithms.

We require the protocol to have the following properties:

Definition 1 (Correctness). A one-round KA protocol Π is
correct if for any tA, tB ⟵ KA:R, and mA ⟵KA:Ms
g1ðtAÞ,mB ⟵KA:Msg2ðtBÞ,

Pr kA = KA:Key1 tA,mBð Þ = KA:Key2 tB,mAð Þ = kB½ � = 1 − negl λð Þ:
ð1Þ

Definition 2 (Security). A one-round KA protocol Π is
secure if for any PPT distinguisher D,

Pr

tA, tB ⟵KA:R ;

mA ⟵KA:Msg1 tAð Þ ;mB ⟵KA:Msg2 tBð Þ ;
k1 ⟵KA:Key1 tA,mBð Þ ; k2 ⟵KA:K ;

b⟵ 0, 1f g ; b∗ ⟵D kb,mA,mBð Þ: b = b∗

2
666664

3
777775 −

1
2

�����������

�����������
= negl λð Þ:

ð2Þ

Definition 3 (Uniformity). A one-round KA protocol Π
is Msg1-uniform if for any PPT distinguisher D,

Pr
tA ⟵ KA:R ;m1 ⟵ KA:Msg1 tAð Þ ;m2 ⟵ KA:M1 ;

b⟵ 0, 1f g ; b∗ ⟵D mbð Þ: b = b∗

" #
−
1
2

�����
�����

= negl λð Þ:
ð3Þ

Likewise, we can define Msg2 uniformity.

Definition 4 (Robustness). A one-round KA protocol Π is
robust if for any PPT distinguisher D,

Pr

tA, tB ⟵KA:R ;mA ⟵KA:Msg1 tAð Þ ;mB ⟵KA:Msg2 tBð Þ ;
m∗

B, stateð Þ⟵D mAð Þ ; k∗ ⟵KA:Key1 tA,m∗
Bð Þ ;

k1 ⟵KA:Key2 tA,mBð Þ ; k2 ⟵KA:K ;

b⟵ 0, 1f g ; b∗ ⟵D state, kb, k
∗,mBð Þ: b = b∗

2
6666664

3
7777775
−
1
2

������������

������������
= negl λð Þ:

ð4Þ

3.4. Programmable-Once Public Function. The primitive
programmable-once public function (POPF) is proposed
by McQuoid et al. [14]. Later in [15], they fixed some issues
in the definition and formally defined a batch 2-POPF. In
our endemic OT protocol, we use a N-POPF, and in its

Figure 1: Secure multiparty computation functionality F f
mpc.

Figure 2: An illustrative example of one-round key agreement protocol.

4 Wireless Communications and Mobile Computing



multi-instance variant, we use a batch N-POPF; therefore,
we provide a formal definition of a batch N-POPF here.

A batch N-POPF consists of two algorithms: Program
: ½N� ×N ⟶M and Eval : M × ½N�⟶N . Programmable-
once means that one can compute ϕ = Programðx, yÞ for an
x ∈ ½N� and y ∈N , but for any other x′ ≠ x, the value of
y′ ∈N such that Programðx′, y′Þ = ϕ should be unpredict-
able, i.e., y′ looks like random. This unpredictability is defined
with respect to a 1-weak random oracle F : N ⟶ O which
produces a pseudorandom y≔ FðxÞ when F is only allowed to
be accessed once.

Definition 5 (1-weak random oracle). A function F : N
⟶ O is a 1-weak random oracle if for any PPT distin-
guisher D,

Pr x⟵N ; y0 ≔ F xð Þ ; y1 ⟵ O ; b⟵ 0, 1f g ; b∗½j
⟵D x, ybð Þ: b = b∗� − 1

2
j = negl λð Þ:

ð5Þ

D can only access F through this experiment.

Now we can formally define a batch N-POPF. Generally,
a batch N-POPF makes use of some local setups H , which
can consist of random oracles, common reference strings,
etc. We use ProgramH and EvalH to denote the algorithms
when they access H . Besides, a batch N-POPF should
include two alternative local setups:

H Sim: this setup provides the same interface asH and an
additional method Sim : N N ⟶M.

HExtract: this setup provides the same interface as H and
an additional method Extract : M⟶ ½N�.

We require the batch N-POPF to have the following
properties:

Definition 6 (Correctness). A batch N-POPF is correct if for
any x ∈ ½N�, y ∈N ,

Pr Eval Program x, yð Þ, xð Þ = y½ � = 1 − negl λð Þ: ð6Þ

Definition 7 (Honest simulation). A batch N-POPF has hon-
est simulation if for any PPT distinguisher D and PPT
adversary A ,

The honest simulation property captures the batch N-
POPF’s ability of hiding x: when b = 0, ϕ0 is generated using
x and when b = 1, ϕ1 is generated from random fr1i gi∈½N�. If
ϕ0 and ϕ1 are indistinguishable even when fr1i gi∈½N� is given,
we can say that ϕ does not leak the information of x.

Definition 8 (Uncontrollable outputs). A batch N-POPF has
uncontrollable outputs if for any 1-weak random oracle F
any PPT distinguisher D and PPT adversary A ,

Pr

ϕ, stateð Þ⟵AHExtract ;

x≔ Extract ϕð Þ, fori ≠ x, r0i ≔ F Eval ϕ, ið Þð Þ ;
fori ≠ x, r1i ⟵N ;

b⟵ 0, 1f g ; b∗ ⟵D state, rbi
n o

i≠x

� �
: b = b∗

2
6666666664

3
7777777775
−
1
2

���������������

���������������
= negl λð Þ:

ð8Þ

The uncontrollable output property restricts the adver-
sary to only be able to program once. Given any ϕ produced
by the adversary A , the Extract method finds an x such that
for i ≠ x, the value of Evalðϕ, iÞ is unpredictable.

Moreover, when the batch N-POPF has an honest simu-
lation and uncontrollable outputs, and the interface of H Sim
and HExtract looks indistinguishable from the adversary, we
can say that the batch N-POPF is secure.

In this work, we use a correct and secure batch N-POPF
which is constructed by McQuoid et al. in [15]. For simplic-
ity, we denote Epða, bÞ as G. The hash functions fhashGi gi∈½N�
are defined as hashGi : GN−1 ⟶G and are modeled as ran-
dom oracles. We provide the details of the batch N-POPF
in Figure 3, and we have the following theorem from [15]:

Theorem 9 (See [15]). Figure 3 defines a correct and secure
batch N-POPF.

3.5. Oblivious Transfer. Oblivious transfer (OT) is a crypto-
graphic primitive that allows a receiver Rec to choose and
to obtain several messages from a bunch of messages held
by a sender Sen, while Sen is not aware of Rec’s choice,
and Rec will not learn anything about the unchosen mes-
sages. The messages held by Sen can be contributed by itself
or generated by the OT functionality. We denote an OT
functionality where Sen decides the messages as sender OT
FS−OT and an OT functionality which generates messages
for Sen as random OT FU−OT. In [10], Naor and Pinkas first
provide an efficient implementation of FS−OT, and in [11],
Chou and Orlandi propose the simplest OT protocol for

Pr

x⟵ N½ � ; s, yð Þ⟵A  ð Þ ; ϕ0 ⟵ Program x, yð Þ, fori ∈ N½ �, r0i ≔ Eval ϕ0, i
À Á

;

r1x ≔ y, fori ≠ x, r1i ⟵N , ϕ1 ⟵ Sim r1,⋯, rNð Þ ;

b⟵ 0, 1f g ; b∗ ⟵DH Sim s, ϕb, rbi
n o

i∈ N½ �

� �
: b = b∗

2
66664

3
77775 −

1
2

����������

����������
= negl λð Þ: ð7Þ

5Wireless Communications and Mobile Computing



FU−OT, and they show how to transform it into a FS−OT
protocol. However, both [10] and the random OT protocol
in [11] do not provide full simulation-based security.

In this work, we make extensive use of a special notion of
OT called 1-out-of-N endemic OT, which is proposed in

[12]. Endemic OT is essentially the same as random OT,
except that the endemic OT functionality allows the
adversary S to determine the corrupted party’s messages.
As depicted in Figure 4, the 1-out-of-N endemic OT
functionality F1,N

E−OT waits for ðSend, sid, ssidÞ from Sen

Figure 3: Batch N-way programmable-once public function from [15].

Figure 4: 1-out-of-N endemic oblivious transfer functionality F1,N
E−OT.

6 Wireless Communications and Mobile Computing



and ðReceive, sid, ssid, cÞ from Rec, where c ∈ ½N� denotes
Rec’s choices. After both messages are obtained,F1,N

E−OT picks
n uniformly random messages fmigi∈½N�. However, when the
adversary S corrupts Sen, it is allowed to determine all the
messages by sending ðFixMessage, sid, ssid, f~migi∈½N�Þ, and
when the adversary S corrupts Rec, it is allowed to determine
the message mc by sending ðFixMessage, sid, ssid,mcÞ. At the
end, F1,N

E−OT sends fmigi∈½N� to Sen and mc to Rec. We also

provide the standard random OT functionality F1,N
U−OT in

Appendix A.1.

3.6. Private Set Intersection. Private set intersection (PSI) is a
specialized MPC problem. In PSI, two parties want to com-
pute the intersection of their input sets, without revealing
the content of their inputs. As described in Figure 5, the
party Sen and Rec send their input sets X and Y to the func-
tionality FPSI, and FPSI computes the intersection Res≔ X
∩ Y and sends Res to Rec. PSI can be solved using generic
MPC techniques, like GMW protocol [37] and Yao’s garbled
circuit protocol [38], while there are also custom protocols
for this problem that are more efficient.

4. SM Series Cryptography

4.1. SM3 Hash Function and Key Derivation Function. Let
SM3ð·Þ denote the SM3 hash function that can map an arbi-
trary length string to a ℓ-bit hash digest, i.e., SM3 : f0, 1g∗
⟶ f0, 1gℓ. Let KDFðm, lengthÞ denote the key derivation
function that takes input as the string m ∈ f0, 1g∗ and the
key length length ∈ℕ, and it outputs length-bit key string
k. In this work, we implement KDF with SM3 hash function
SM3, and the details are shown in Algorithm 1.

The security of KDF directly follows the security of SM3.

4.2. SM4 Block Cipher Algorithm. Let F : f0, 1gλ × f0, 1gℓ
⟶ f0, 1gℓ denote the block cipher that takes a λ-bit seed
and ℓ-bit plaintext as input and output an ℓ-bit ciphertext.
The SM4 block cipher algorithm has an electronic codebook
(ECB) mode and a cipher block chaining (CBC) mode. In
ECB mode, SM4 is instantiated by repeatedly invoking F,
in other words, SM4kðm1,⋯,mnÞ = ðFkðm1Þ,⋯, FkðmnÞÞ;
in CBC mode, each block of ciphertext depends on the
previous ciphertext block and an initialization vector iv is
used, more specifically, SM4kðm1,⋯,mnÞ = ðc1,⋯, cnÞ,
where c1 ≔ Fkðm1 ⊕ ivÞ and ci ≔ Fkðmi ⊕ ci−1Þ for i ≠ 1.

4.3. SM2 Key Agreement Protocol. The SM2 key agreement
protocol is defined in the PKI setting, and it works on elliptic
curve E defined over the field Fp. The parties A and B first
agree on the output key length and an elliptic curve sys-
tem where the elliptic curve discrete logarithm problem
(ECDLP) is hard. The system parameters include p, a, b,
g = ðxg, ygÞ, n, h, and w≔ dðdlog2ðnÞe/2Þe − 1 is used in
the computation.

We assume each party knows the other party’s distin-
guishing identifier ID and a PKI distributes the public key
pk = ðxpk, ypkÞ computed from pk = ½sk�g. Therefore, the
parties can compute the identifier hash value Z ≔ SM3
ðENTLkIDkakbkxgkygkxpkkypkÞ, where ENTL is the length
of ID and SM3 outputs a 256-bit string. Therefore, A has s
kA, pkA, pkB, ZA, ZB, and B has skB, pkA, pkB, ZA, ZB. The
public key/secret key pairs are used to prevent the man-in-
the-middle attack, and the identifier hash values are used to
identify the parties executing the protocol. In a nutshell, the
SM2 key agreement protocol consists of the following PPT
algorithms which use elliptic curve system parameters
implicitly:

Figure 5: Private set intersection functionality FPSI.

7Wireless Communications and Mobile Computing



(i) ðm, tÞ⟵MsgGenðÞ is the message generation
algorithm that outputs a fresh random private mes-
sage t and the corresponding public message m

(ii) p⟵ PointGenðt,m,m′, sk, pk′Þ is the point gen-
eration algorithm that takes input as the party’s pri-
vate message t, both parties’ public messages m,m′,
the party’s secret key sk, and the other party’s public
key pk′, and it outputs a point that can be used to
derive the shared key

(iii) k⟵KeyGenðp, ZA, ZBÞ is the key generation
algorithm that takes input as the point p, A and
B’s identification message ZA, ZB, and it outputs
a shared key k

We slightly modify the order of message delivery in the
original SM2 key agreement protocol to achieve the one-
round property. In the original protocol, party B sends the
messages mB to A after it obtains the key kB, which indicates
B sends mB only after mA is received, while we notice that
this step can be done right after mB is generated, and it does
not raise any security issues. In our modified protocol, A first
invokes MsgGen to generate ðmA, tAÞ⟵MsgGenðÞ, and it
sends mA to B. After receiving mB from B, A computes the
point pA ≔ PointGenðtA,mA,mB, skA, pkBÞ and derives
kA ≔ KeyGenðpA, ZA, ZBÞ. The execution of B is exactly
symmetric. The process of the protocol is illustrated in
Figure 6, and the details of the algorithms can be found
in Figure 7.

When key confirmation is needed, an augmented SM2
key agreement protocol can be used which contains one
more PPT algorithm Verify and several more steps.

h⟵Verifyðs, p,mA,mB, ZA, ZBÞ is the verification
algorithm that takes input as a string s, a point p, both
parties’ public messages mA,mB, and both parties’ identifier
hash values ZA, ZB, and it outputs a hash value h.

As in Figure 6, after generating pA and kA, A invokes
hA ≔Verifyð“A”, pA,mA,mB, ZA, ZBÞ as a proof that it
obtains a correct point pA and is able to derive a correct
key, and it sends hA to B. When it receives hB from B, it
checks if B obtains the correct point pB. The process of B is
likewise.

Claim 10. If the key derivation function KDF is modeled as a
random oracle, and the ECDLP is hard in Epða, bÞ, then the
SM2 key agreement protocol is a one-round KA protocol

with perfect correctness, security, perfect Msg1 uniformity,
perfect Msg2 uniformity, and robustness.

Proof. It has been shown in [39] that the SM2 key agreement
protocol is secure in the well-known Bellare-Rogaway model
[40, 41] when the key derivation function is modeled as a
random oracle and the ECDLP is hard in Epða, bÞ. Security
in the Bellare-Rogaway model means perfect correctness
and security of the KA protocol. Moreover, as illustrated in
Figure 7, mA = ½tA�g, where tA is a uniformly random ele-
ment from ½n − 1�; since mA is generated by a bijective func-
tion, it should be perfectly indistinguishable from a random
element in G, which indicates the perfectMsg1 uniformity of
the protocol, and the perfect Msg2 uniformity can be
obtained in the same way. At the end, the parties A and B
already hold pA = pB after PointGen is invoked, which can
be used as a shared key, and the KeyGen function only con-
verts the point to a bit string. As proved in [14], this gives
the robustness of the SM2 key agreement protocol when
KDF is modeled as a random oracle, since a random oracle
outputs uniformly random strings.

5. Construct Oblivious Transfer Using SM

In this section, we show how to construct an oblivious trans-
fer protocol using the SM series cryptography and the batch
N-POPF. Moreover, we illustrate how to extend the number
of OT instances using OT extension protocols. Before pre-
senting the constructions, we first provide the descriptions
of the symbols used in Table 1.

5.1. Oblivious Transfer from SM2 Key Agreement. Our one-
round 1-out-of-N endemic oblivious transfer protocol
Π1,N

E−OT is constructed from the SM2 key agreement protocol
and the batch N-POPF defined in Figure 3. As depicted in
Figure 8, the sender Sen and the receiver Rec first run a setup
phase to determine the protocol parameters and to exchange
the public keys along with the distinguishable identifiers.
This setup phase only needs to be run once between these
two parties Sen and Rec, and the parameters can be used
in multiple instances.

When Sen receives the instruction ðSend, sid, ssidÞ from
the environment Z , it invokes MsgGen to generate mA, tA,
and it sends mA to Rec. Meanwhile, Rec receives the
instruction ðReceive, sid, ssid, cÞ from Z , and it invokes
ðmB, tBÞ⟵MsgGenðÞ. After that, Rec generates frigi∈½N�

1. Set ctr = 1;
2. For i ∈ ½dlength/ℓe�:

(a) Compute hctr ⟵ SM3ðmkctrÞ;
(b) Set ctr = ctr + 1;

3. If dlength/ℓe ≠ length/ℓ, set �h as the top length − ðℓ ∗ blength/ℓcÞ bits of hdlength/ℓe; otherwise, set �h≔ hdlength/ℓe;
4. Set k≔ h1k⋯ khdlength/ℓe−1k�h;
5. Output k.

Algorithm 1

8 Wireless Communications and Mobile Computing



by frigi∈½N� ≔ Programðc,mBÞ and sends frigi∈½N� to Sen.
Upon receiving frigi∈½N� from Rec, for i ∈ ½N�, Sen sets
mB,i ≔ Evalðfr jgj∈½N�, iÞ, computes pi ≔ PointGenðtA,mA,
mB,i, skA, pkBÞ, and sets ki ≔ KeyGenðpi, ZA, ZBÞ. Sen then
returns ðSend, sid, ssid, fkigi∈½N�Þ to Z. Upon receiving mA,
Rec computes pc ≔ PointGenðtB,mB,mA, skB, pkAÞ and sets
kc ≔ KeyGenðpc, ZA, ZBÞ. At the end, Rec returns ðReceive,
sid, ssid, kcÞ to Z.

The correctness of the protocol directly follows the cor-
rectness of the SM2 key agreement protocol and the batch
N-POPF. For the security proof, intuitively, since the SM2
key agreement has perfect Msg2 uniformity, the message
mB should be indistinguishable from a random element
from G; by the honest simulation property of the batch N-
POPF, rc should be indistinguishable from other frigi≠c.
Therefore, Rec’s choice c remains private to Sen. Besides,
because of the robustness of the SM2 key agreement

Figure 6: SM2 key agreement protocol with optional key confirmation. The parties A and B share the elliptic curve system parameters
p, a, b, g, n, h,w≔ dðdlog2ðnÞe/2Þe − 1; the public keys pkA, pkB; the identifier hash values ZA, ZB; and the output key length.

Figure 7: Algorithms used in SM2 key agreement protocol.

Table 1: Symbols used in the OT protocol and the OT extension protocol.

Symbol Description

skA, skB The private key of the users

pkA, pkB The public key of the users

ZA, ZB The hash value of the user’s ID, the system’s parameter, and the user’s public key

MsgGenðÞ The message generation algorithm in the SM2 key agreement protocol

PointGenðÞ The point generation algorithm in the SM2 key agreement protocol

KeyGenðÞ The key generation algorithm in the SM2 key agreement protocol

ProgramðÞ The program algorithm in the batch N-POPF

EvalðÞ The evaluation algorithm in the batch N-POPF

9Wireless Communications and Mobile Computing



protocol and the uncontrollable output property of the batch
N-POPF, the output messages fkigi≠c should be unpredict-
able to Rec.

More formally, we use a theorem from [15]:

Theorem 11 (See [15]). If the KA protocol has security, Msg2
uniformity and robustness and the batch N-POPF are secure,
and then, the protocol Π1,N

E−OT described in Figure 8 securely
realizes the endemic 1-OPRF functionality in the random
oracle model.

Specifically, 1-OPRF is essentially 1-out-of-N OT.
Therefore, we have the following result:

Theorem 12. If ECDLP is hard in G, the hash functions
fhashGi gi∈½N� and the key derivation function KDF are

modeled as random oracles, and then, the protocol Π1,N
E−OT

described in Figure 8 securely realizes F1,N
E−OT described in

Figure 4 against any PPT malicious adversary corrupting
Sen or/and Rec.

The proof is automatically done given Theorems 9
and 11.

The main focus of [12, 14, 15] is the malicious setting.
When it comes to the semihonest setting, we notice that
Π1,N

E−OT securely realizes the standard random OT functional-
ity F1,N

U−OT as well as the endemic OT functionality F1,N
E−OT.

This is because the power of the adversary is limited
to observing the protocol messages. We provide the
results below.

Theorem 13. If ECDLP is hard in G, the hash functions
fhashGi gi∈½N� and the key derivation function KDF are

modeled as random oracles, and then, the protocol Π1,N
E−OT

described in Figure 8 securely realizes F1,N
U−OT described in

Figure 9 against any PPT semihonest adversary corrupting
Sen or/and Rec.

The proof can be found in Appendix B.1.

Corollary 14. If ECDLP is hard in G, the hash functions
fhashGi gi∈½N� and the key derivation function KDF are

modeled as random oracles, and then, the protocol Π1,N
E−OT

described in Figure 8 securely realizes F1,N
E−OT described in

Figure 4 against any PPT semihonest adversary corrupting
Sen or/and Rec.

The proof can be found in Appendix B.2.

5.2. Oblivious Transfer Extension. Although the endemic OT
protocol Π1,N

E−OT is quite efficient, the exponentiation opera-
tions in Π1,N

E−OT can still be too expensive when we need mil-
lions of OTs in applications. In such cases, a technique called
oblivious transfer extension can be adopted to generate OTs
much faster. An OT extension protocol takes a bunch of
“base” OTs to initiate the protocol, and then, it extends them
to polynomially many OTs using only symmetric primitives,
instead of asymmetric primitives. The Beaver [42] first intro-
duced the idea of OT extension, and the following works [43,
44] proposed several highly efficient OT extension protocols.
In this work, we use the well-optimized 1-out-of-2 OT
extension protocol from [45] in the semihonest setting; in
the malicious setting, we consider the protocol from [46]

Figure 8: One-round 1-out-of-N endemic oblivious transfer protocol Π1,N
E−OT.

10 Wireless Communications and Mobile Computing



with endemic OT as base OT and apply the result of [47] to
reduce the communication round. When it comes to the 1-
out-of-N OT extension, results of [48, 49] can be adopted. The
OT extension protocols securely realize the multi-instance ver-

sion of the OT functionalities, and we provide the multi-
instance 1-out-of-2 endemic OT functionality in Figure 10,
which is similar to FE−OT. The multi-instance 1-out-of-2
uniform OT functionality can be found in Appendix A.1.

Figure 9: 1-out-of-N random oblivious transfer functionality F1,N
U−OT.

Figure 10: Multi-instance endemic oblivious transfer functionality Fnum
E−OT.

11Wireless Communications and Mobile Computing



5.2.1. Batching Base OT. The base OTs can be obtained by
repeatedly invoking the single-instance functionality F1,2

E−OT
orF1,2

U−OT; however, the more efficient way is to design a pro-
tocol that directly realizes the multi-instance functionality.
Our construction Πnum

E−OT is essentially the same as Π1,N
E−OT,

where N = 2, except that Rec generates multiple message pairs
ðmB,i, tB,iÞ at once, and each message pair is used to generate
one OT instance. The details can be found in Figure 11. This
batching method saves Sen from repeatedly generating mes-
sage pairs mA,i, tA,i, thus reducing the computation and com-
munication costs. In [15], McQuoid et al. showed that this
batching preserves the security of the original protocol when
a tag is used in the generation of the KA protocol output to
produce different OT results for each OT instance. In our
protocol, we preserve the structure of the SM2 key agreement
protocol, and we add the tag in the key derivation function
KDF: we set the tag as ik1 for the i-th KDF invocation. There-
fore, the protocol Πnum

E−OT in Figure 11 is secure, and we have
the following theorem:

Theorem 15. If ECDLP is hard in G, the hash functions
fhashGi gi∈½N� and the key derivation function KDF are

modeled as random oracles, and then, the protocol Πnum
E−OT

described in Figure 11 securely realizes Fnum
E−OT described in

Figure 10 against any PPT malicious adversary corrupting
Sen or/and Rec.

5.2.2. OT Extension in Semi-Honest Setting. In the semihon-
est setting, the protocol Π1,N

E−OT securely realizes the random
OT functionality F1,2

U−OT when N = 2, so the protocol Πnum
E−OT

securely realizes the multi-instance random OT functional-
ity Fnum

U−OT. Therefore, we take 1-out-of-2 random OT as
the base OT of the OT extension protocol. As depicted in
Figure 12, the OT extension protocol Πsemi

OTE needs λ base
OTs to start the extension; typically, λ = 128 is used consid-
ering both security and performance. To generate the base
OTs, the sender Sen of the outer protocol acts as the receiver,
and it picks random select bits frigi∈½λ� and sends frigi∈½λ� to
Fnum

U−OT; the receiver Rec of the outer protocol acts as the
sender and sends ðSend, sid, ssidÞ to Fnum

U−OT. The random
OT functionality picks random fk0i , k1i gi∈½λ�, and it sends

fk0i , k1i gi∈½λ� to Rec and sends fkrii gi∈½λ� to Sen. After obtain-
ing the base OTs, Rec forms the choice bits fcigi∈½m� as a col-
umn vector. For i ∈ ½λ�, Rec computes the PRG to generate
ti ⟵ PRGðk0i Þ and parses ti as a column vector, and it sets
ui ≔ ti ⊕ PRGðk1i Þ ⊕ C. After that, Rec forms a m × λ matrix
T ≔ ðt1,⋯, tλÞ. For i ∈ ½m�, Rec computes hcii ⟵ has
hlengthði, TiÞ as its random OT message where Ti is the i-th
row of thematrixT. Subsequently,Rec sends fuigi∈½λ� and out-
puts. After obtaining the base OT results and fuigi∈½λ�, Sen sets
qi ≔ ðri · uiÞ ⊕ PRGðkiriÞ for i ∈ ½λ�. It then forms a m × λ

matrix Q≔ ðq1,⋯, qλÞ and a row vector R≔ ðr1,⋯, rλÞ. For
i ∈ ½m�, Sen computes h0i ⟵ hashlengthði,QiÞ and h1i ⟵ has
hlengthði,Qi ⊕ RÞ as its OT output.

Now we examine the correctness of Πsemi
OTE. For

each column of the matrix Q, Qi = ðri · uiÞ ⊕ PRGðkrii Þ = ðri ·
ðPRGðk0i Þ ⊕ PRGðk1i Þ ⊕ CÞÞ ⊕ PRGðkrii Þ, we can write

Figure 11: Multi-instance endemic oblivious transfer protocol Πnum
E−OT.

12 Wireless Communications and Mobile Computing



PRGðkrii Þ = ð1 ⊕ riÞ · PRGðk0i Þ ⊕ ri · PRGðk1i Þ as before, and
this gives us Qi = PRGðk0i Þ ⊕ ri · C = Ti ⊕ ri · C. Therefore,
for each row of the matrix, we have Qi = Ti ⊕ ci · R, and
thus, the protocol is correct. As for the security of the pro-
tocol, in [45], Asharov et al. prove that Πsemi

OTE securely real-
izes Fnum

U−OT. Moreover, We can obtain a result similar to
Corollary 14 that Πsemi

OTE securely realizes the multi-instance
endemic OT functionality Fnum

E−OT.

Theorem 16. The protocol Πsemi
OTE described in Figure 12

securely realizes Fnum
U−OT described in Figure 13 against any

PPT semihonest adversary corrupting Sen or/and Rec.
The proof is done by Asharov et al. [45].

Corollary 17. The protocol Πsemi
OTE described in Figure 12

securely realizes Fnum
E−OT described in Figure 10 against any

PPT semihonest adversary corrupting Sen or/and Rec.

Figure 12: Semihonest setting 1-out-of-2 oblivious transfer extension protocol Πsemi
OTE.

Figure 13: Multi-instance random oblivious transfer functionality Fnum
U−OT.

13Wireless Communications and Mobile Computing



The proof is similar to the proof of Corollary 14.

5.2.3. OT Extension in Malicious Setting. The malicious set-
ting is more difficult to handle. When the base OTs are
endemic OTs, we can only extend them to more endemic
OTs, and the sender Sen needs to check the consistency of
the messages sent by the receiver Rec. We provide the mali-
cious setting OT extension protocol Πmal

OTE in Figure 14. The
main process of extending oblivious transfer remains the
same as the semihonest setting protocol Πsemi

OTE, so is the
correctness of the protocol. However, a malicious Rec can
violate the requirement that the same choice bits should be
used when computing the vectors fuigi∈½λ�. In [46], Rec
needs to prove its honesty in zero knowledge, and generally
speaking, the consistency check uses a random linear combi-
nation of the row vectors of the matrices, and the coefficients
of the linear combination should be unpredictable to Rec,
e.g., they are randomly picked by Sen. In [47], Doerner
et al. use Fiat-Shamir heuristic [50] to make the zero-
knowledge proof process noninteractive: the coefficients are
generated by a hash function taking the matrix U as input.
The formal security proof of the protocolΠmal

OTE can be found
in [12].

Theorem 18. The protocol Πmal
OTE described in Figure 14

securely realizes Fnum
E−OT described in Figure 10 against any

PPT malicious adversary corrupting Sen or/and Rec.
The proof is done by Masny and Rindal [12].

6. Generate the Beaver Triple

A wide range of MPC protocols working on circuits requires
heavy computation and huge communication to compute
AND gates and multiplication gates. To speed up the MPC
protocols, a research trend is to split the protocol into a prepro-
cessing phase independent of parties’ input and an online phase
where the computation proceeds using actual input and data
from the preprocessing phase. Therefore, parties can run the
preprocessing phase whenever they are available and respond
instantly when the computation needs to proceed.

As for secret-sharing-based MPC protocols, Beaver
introduces a notion of the Beaver triple (or multiplication
triple) in [51]. Basically, a Beaver triple consists of shared
triples fai, bi, cigi∈½N�, where ai, bi, ci are chosen randomly
with ⊕ ci = ⊕ ai∧ ⊕ bi that always holds. The length of the
Beaver triple can vary with applications, and in this work,
we refer the Beaver triple with a length larger than 1 as a

Figure 14: Malicious setting 1-out-of-2 oblivious transfer extension protocol Πmal
OTE.

14 Wireless Communications and Mobile Computing



multiplication triple, and a Beaver triple with a length of 1 is
simply called the Beaver triple.

As depicted in Figure 15, the triple-generation function-
ality F triple first waits for all parties to send a ðGenerate, sid
, PiÞ instruction. After that, it allows the adversary S to
determine the content of the triple received by the corrupted
Pi by sending ðFixTriple, sid, Pi, ðai, bi, ciÞÞ. Subsequently, as
for the parties not corrupted, F triple picks uniformly random
ai, bi, ci. However, to ensure that ⊕ ci = ⊕ ai∧ ⊕ bi, F triple
chooses the party with the smallest index i among the uncor-
rupted parties and sets ci ≔ ð∑ajÞ · ð∑bjÞ − ð∑j≠icjÞ. At the
end, F triple sends ðGenerate, sid, Pi, ðai, bi, ciÞÞ back to Pi.

6.1. Two-Party Beaver Triple Generation. We first introduce
how to generate the Beaver triple among two parties using
endemic OT. In an OT execution, the receiver sends b to
obtain mb, and the sender obtains two messages m0,m1.
Notice that mb can be represented as b∧m1 ⊕ ð1 ⊕ bÞ∧m0,
and if we set a =m0 ⊕m1, then m0 ⊕mb = b∧m0 ⊕ b∧m1
= a∧b. Therefore, invoking the endemic OT twice with P1
and P2 playing the sender in turn is directly a Beaver triple-
generation protocol Πtriple, which can be found in Figure 16.
In Πtriple, party Pi first picks random bi, and then, it invokes

the endemic OT functionality F1,2
E−OT as sender and receiver,

respectively. When F1,2
E−OT sends mi

0,mi
1, and m3−i

bi
back to Pi,

Pi sets ai ≔mi
0 ⊕mi

1 and ci ≔ ai∧bi ⊕mi
0 ⊕m3−i

bi
.

In the implementation, the main cost of the protocol
Πtriple is to invoke F1,2

E−OT twice. When F1,2
E−OT is instantiated

with Π1,N
E−OT, which is a one-round protocol, the protocol

Πtriple also has round complexity 1. Besides, Π1,N
E−OT only

needs to transfer 3 group elements in total, which means
Πtriple only needs 6. Moreover, we can use the multi-
instance OT functionality to generate a bunch of OT
instances in advance, which further reduces the computation

and communication costs. Therefore, Πtriple can be
extremely suitable for lightweight devices in extreme net-
work environments with high delay and low bandwidth.

Although endemic OT is a weak version of general random
OT, the protocol Πtriple is still secure in the malicious setting,
and we provide the theorem together with the proof below.

Theorem 19. The protocol Πtriple described in Figure 16
securely realizes F triple described in Figure 15 with length = 1

in the F1,2
E−OT-hybrid model against any PPT malicious adver-

sary corrupting P1 or P2.

The proof can be found in Appendix B.3.
Given this two-party Beaver triple-generation protocol

Πtriple, we can use it to generate sufficiently many Beaver tri-
ples in the preprocessing phase and carry out a GMW-style
two-party computation protocol [37] in the online phase,
where the XOR gates can be computed locally and the
AND gates consume one Beaver triple each and need com-
munication. The details of the protocol Π2PC can be found
in Figure 17. This provides an efficient solution to a generic
two-party computation over the Boolean circuits.

Theorem 20. The protocolΠ2PC described in Figure 17 securely

realizes F f
mpc described in Figure 1 in the F triple-hybrid model

against any PPT semihonest adversary corrupting P1 or P2.
The proof is done by combining the result of [37, 51].

6.2. Multiparty Multiplication Triple Generation. We can
extend the Beaver triple-generation protocol Πtriple to the
multiparty setting and generate multiplication triple of
length ≥ 1 with one more round communication. Therefore,

we obtain the protocolΠN ,length
triple described in Figure 18 which

is secure in the semihonest setting, even when the endemic

Figure 15: Beaver/multiplication triple generation functionality F triple.

15Wireless Communications and Mobile Computing



OT functionality is used which gives more power to the
adversary A .

The core idea is still using the OT functionality to gener-
ate correlated messages, and again, we can simply invoke the
multi-instance OT functionality and use the OT extension
technique to generate polynomially many OT instances in
advance. In Πtriple, all computations are on the ring ℤ2,
while now, we consider ℤ2length . Assume an endemic OT out-

putsm0,m1 to sender andmb to receiver for choice bit b, and
it holds that mb = b ·m1 + ð1 − bÞ ·m0 mod 2length.

Consider the simple case where length = 1, we have

sj,i −m0
i,j ≡mbi

j,i + bi · rj,i −m0
i,j

≡ bi ·m1
j,i + 1 − bið Þ ·m0

j,i + bi

· aj +m0
j,i −m1

j,i

� �
−m0

i,j

≡m0
j,i + bi · aj −m0

i,j,

ð9Þ

Figure 16: Two-party Beaver triple generation protocol Πtriple in the F1,2
E−OT-hybrid model.

Figure 17: GMW-style two-party computation protocol Π2PC in the F triple-hybrid model.

16 Wireless Communications and Mobile Computing



Figure 18: Multiparty multiplication triple generation protocol ΠN ,length
triple in the F1,2

E−OT-hybrid model.

Figure 19: SPDZ-style multiparty computation protocol ΠMPC in the F triple-hybrid model.

17Wireless Communications and Mobile Computing



and we can extend Equation (9) to Equation (10), which

proves the correctness of the protocol ΠN ,length
triple .

〠
i

ci ≡〠
i

ai · bi +〠
j≠i

sj,i −m0
i,j

� � !

≡〠
i

ai · bi +〠
j≠i

m0
j,i + bi · aj −m0

i,j

� � !

≡ 〠
i

ai

 !
· 〠

i

bi

 !
:

ð10Þ

Now, we proceed to provide the security of the protocol

ΠN ,length
triple .

Theorem 21. The protocol ΠN ,length
triple described in Figure 18

securely realizes F triple described in Figure 15 with length ≥
1 in the F1,2

E−OT -hybrid model against any PPT semihonest
adversary corrupting no more than N − 1 parties.

The proof can be found in Appendix B.4.

Given this multiparty multiplication triple-generation

protocol ΠN ,length
triple , we can use it in the semihonest SPDZ-

style multiparty computation protocol [25], where each mul-
tiplication gate consumes one multiplication triple. Note
that the original SPDZ protocol is designed for the malicious
setting, and it includes information-theoretic MAC to
ensure correctness, while in the semihonest setting, these
checks can be removed. The details of the resulting MPC
protocol ΠMPC can be found in Figure 19. ΠMPC provides
an efficient solution to generic multiparty computation over
the arithmetic circuits, which are more powerful than the
Boolean circuits.

Theorem 22. The protocol ΠMPC described in Figure 19

securely realizes F
f
mpc described in Figure 1 in the F triple

-hybrid model against any PPT semihonest adversary cor-
rupting up to N − 1 parties.

The proof is done by combining the result of [37, 51].

7. Private Set Intersection from OT

Apart from generic MPC protocols, there are also protocols
dedicated for special usage, e.g., PSI. The PSI protocol ΠPSI

Figure 20: Private set intersection protocol ΠPSI in the F1,2
U−OT-hybrid model.

18 Wireless Communications and Mobile Computing



(Figure 5) is taken from the work of Chase and Miao [52],
and we instantiate the OT functionality with Π1,N

E−OT as
another application of this endemic OT protocol. When
the required OT number is large, we can use the OT exten-
sion technique to extend the number of OT instances.

The security of ΠPSI in the semihonest setting directly
follows the result of [52] since according to Theorem 13,
the protocol Π1,N

E−OT (as well as the protocol Πsemi
OTE) securely

realizes the random OT functionality in this setting. More-
over, Chase and Miao consider one-sided malicious security,
where the Sen can be maliciously corrupted by the adver-
sary. However, we notice that FE−OT does not meet the secu-
rity requirement ofΠPSI, and in such a case, the protocol can
be insecure. As stated above, in the malicious setting, Π1,N

E−OT
only realizes F1,2

E−OT, which allows the adversaryA to control
the OT messages. Specifically, A can influence the protocol
output by changing the OT messages, enabling the environ-
ment to distinguish between the real world and the ideal
world. We provide the result along with its proof below.

Theorem 23. The protocol ΠPSI described in Figure 20 is not
secure against a PPT malicious adversary corrupting Rec
when the endemic OT functionality F1,2

E−OT is used even if F
is a secure PRF, hashℓ1 and hashℓ2 are modeled as random
oracles, and parameters m,w, ℓ1, ℓ2 are chosen properly.

Proof. To prove Theorem 23, we construct an adversary A

and an environment Z such that for any PPT simulator S ,

Z can distinguish between (i) the real execution exe

cF
1,2
E−OT

ΠPSI,A ,Z , where the parties P ≔ fSen, Recg run protocol

ΠPSI in the F1,2
E−OT-hybrid model and the corrupted Sen is

controlled by A , and (ii) the ideal execution execFPSI,S ,Z ,
where the parties Sen and Rec interact with the functionality
FPSI in the ideal world, and corrupted Sen is controlled by
the simulator S .

7.1. Adversary. The adversary A instructs Sen to run the
protocol faithfully except for the following steps.

For i ∈ ½w�, upon receiving ðSendNotify, sidÞ from F1,2
E−OT,

the adversary A sends ðReceive, sid, 0Þ to F1,2
E−OT on behalf

of Sen.

0 20 40 60 80 100 120 140
0

5

10

15

20

25

Number of OT Instances

Ti
m

e (
m

s)

Figure 22: Running OT protocols on LAN.

Ti
m

e (
m

s)

0 20 40 60 80 100 120 140

50

100

150

200

Number of OT Instances

NP01
CO15

MR19
Ours

Figure 23: Running OT protocols on WAN.

Figure 21: Sender chosen oblivious transfer protocol Π1,N
S−OT in the F1,N

E−OT-hybrid model.

19Wireless Communications and Mobile Computing



For i ∈ ½w�, upon receiving ðReceiveNotify, sidÞ from
F1,2

E−OT, A sends ðFixMessage, sid, 0Þ to F1,2
E−OT.

A makes polyðλÞ random queries to hash1 after receiv-
ing fΔigi∈½w�, k from Rec on behalf of Sen.

The environment Z outputs 1 if Rec sends ðCompute,
sid, ResÞ back where Res = X ∩ Y , and it outputs 0 otherwise.

This can be seen as a drawback of the endemic OT func-
tionality in that its application scenarios are limited, and
sometimes, we need other types of OT functionalities. As
depicted in Figure 21, we can adopt the transformation of
[53] and obtain F1,N

S−OT at the cost of one more round com-
munication. After transformation, our endemic OT protocol
can be used to construct this highly efficient PSI protocol
ΠPSI even in the malicious setting. We can also obtain
FU−OT and FR−OT following the protocols in [12].

8. Implementation and Benchmarks

In our protocols, we instantiate all the hash functions involved
with SM3 hash function SM3 : f0, 1g∗ ⟶ f0, 1gℓ. When the
required output length is not to ℓ, we adopt a similar technique
as used in the construction of the key derivation function (cf.
Section 4.1). The pseudorandom function PRF and pseudo-
random number generator function PRG can be instantiated
with the SM4 block cipher algorithm SM4 : f0, 1gλ × f0, 1gℓ
⟶ f0, 1gℓ. Roughly speaking, to implement PRF : f0, 1gλ
× f0, 1gℓ ⟶ f0, 1gℓ, we use PRFkðmÞ = SM4kðmÞ. To
implement PRG : f0, 1gλ ⟶ f0, 1gm, where m = n · ℓ, we
use PRGðkÞ = SM4kð0Þk⋯ kSM4kðn − 1Þ. When ℓ∤m, we
truncate the extra bits as in Section 4.1. As for other men-
tioned protocols, we instantiate the hash function, PRF and
PRG functions as described in their works, e.g., SHA256, for
the hash function, and AES for PRF.

8.1. Experimental Setup. We perform the experiments on
Dell OptiPlex 7080 equipped with an Intel Core 8700 CPU
@ 3.20GHz with 32.0GB RAM, running Ubuntu 18.04
LTS. We evaluate all protocols in two simulated network set-
tings: (i) a LAN setting with 1Gbps bandwidth and 1ms
delay and (ii) a WAN setting with 100Mbps bandwidth
and 50ms delay. All test results are the average of 10 tests.

8.2. Oblivious Transfer Evaluation. We first compare the
performance of our multi-instance OT protocol Πnum

E−OT with
several state-of-the-art OT protocols [10, 11] and [12]. Note
that the OT protocol in [10] is a sender OT protocol, and it
needs an additional round to transfer messages. While [11,
12] and our protocol only generate random correlated
messages. Besides, our protocol is based on the SM series
cryptography, especially the SM2 key agreement protocol,
while the other three protocols are inspired by the Diffie-
Hellman key agreement protocol [54].

In Figure 22, we show the running time of the protocols
in the LAN setting. Since the SM2 key agreement protocol
needs more exponentiation operations than the Diffie-
Hellman key agreement protocol, our protocol will be slower
than the other protocols when the number of OT instances
is large. However, as is shown in Figure 23, in the WAN set-
ting, our protocol is faster than the protocol of Naor and
Pinkas [10] as well as the protocol of Chou and Orlandi
[11] because our protocol only needs one round as the pro-
tocol of Masny and Rindal [12]. Therefore, our protocol is
specifically suitable for bad network environments, e.g., the
wireless network. We also provide the detailed running time
in Table 2. In the LAN setting, [11] is the fastest protocol for
a large number of OT instances since it requires the least
number of exponentiation operations. And in the WAN set-
ting, [12] is the fastest protocol because it only needs one
round of communication, and our protocol is slightly slower

Table 2: Running time of OT protocols in milliseconds.

Protocol Rounds
Num

1 8 32 64 128 1 8 32 64 128
LAN WAN

[10] 3 3.56 5.61 8.11 9.48 11.73 150.8 153.0 160.4 169.8 189.0

[11] 2 2.78 4.47 6.73 7.85 9.69 101.0 102.8 109.3 116.8 133.5

[12] 1 1.58 3.77 6.35 9.22 14.67 50.6 54.3 66.4 82.6 106.2

Ours 1 2.07 4.08 7.65 13.95 25.70 51.1 57.7 79.9 98.5 117.1

Table 3: Running times in milliseconds of the semihonest OT extension protocol with different base OT protocols.

Protocol
Num

104 105 106 107 104 105 106 107

LAN WAN

[10] 19 48 220 1550 249 421 1847 15543

[11] 17 45 217 1546 242 414 1842 15439

[12] 23 52 228 1553 214 389 1813 15332

Ours 34 63 238 156 227 404 1826 15410

20 Wireless Communications and Mobile Computing



than [12]. We note that our protocol is the only one that is
based on the SM series cryptography and can be legally used
for commercial purposes in China.

In real-life applications, OT extension techniques are
often used to generate hundreds of thousands of OT
instances with high speed. In such cases, the performance
of the base OT protocols only has a minor impact on the
performance of the overall protocol. To illustrate this, we
provide the test result in Table 3. We use the OT protocols
of [10–12] and our multi-instance OT protocol as the base
OT for the semihonest setting OT extension. As the number
of OT instances increases, the running time of different pro-
tocols is relatively closer. In the LAN setting, our protocol
only takes 1.563 seconds to generate 10 million OT
instances. And in the WAN setting, our protocol can gener-
ate the same number of OT instances in 15.41 seconds.
Therefore, our protocol is comparable with other OT proto-
cols in many application scenarios.

8.3. Triple-Generation Evaluation. One of the applications of
our OT protocol is to generate the Beaver triples, which can
be used in many MPC applications. Our Beaver triple-
generation protocol Πtriple invokes the endemic OT func-
tionality. We use different OT protocols as the base OT pro-
tocols for the OT extension protocol, and we use the OT
extension protocols for the triple generation protocols. The
test results can be found in Table 4, and as one can see,
the performance of the triple-generation protocol mainly
depends on its underlying OT extension protocols. In the
LAN setting, our protocol needs 3.238 seconds to generate
10 million Beaver triples. And in the WAN setting, our pro-
tocol can generate the same number of Beaver triples in
31.814 seconds.

9. Conclusion

In this work, we investigate the problem of secure computa-
tion from the SM series cryptography, which complies with
the Chinese cryptographic laws and is authorized for com-
mercial usages in China. We show how to generate OT using
the SM2 and SM3 algorithms. Moreover, we instantiate the
OT extension protocols in the semihonest setting and mali-
cious setting with the SM3 and SM4 algorithms, which can
efficiently extend some base OTs to a polynomial number
of OTs. With the generated OT, we can securely realize the
Beaver multiplication triple-generation functionality and
further construct generic MPC protocols. Besides, we show
that the specific MPC, PSI, can also be implemented using

the SM2, SM3, and SM4 algorithms. The proposed protocols
are secure in the random oracle model and the public key
infrastructure setting. The evaluation results indicate that
our constructions are comparable to existing protocols and
especially suitable for the wireless network environment.
Therefore, we provide an efficient secure computation solu-
tion from SM series cryptography, and it is the first solution
that can be used for commercial purposes in China.

Appendix

A. Functionalites

A.1. Random Oblivious Transfer. As depicted in Figure 9, the
1-out-of-N endemic OT functionality F1,N

U−OT waits for ðSend,
sid, ssidÞ from Sen and ðReceive, sid, ssid, cÞ from Rec, where
c ∈ ½N� denotes Rec’s choices. After both messages are obtained,
F1,N

U−OT picks n uniformly random messages fmigi∈½N�. At the
end, F1,N

U−OT sends fmigi∈½N� to Sen and mc to Rec.
Figure 13 depicts the multi-instance version of 1-out-of-2

FU−OT.

B. Proof of Theorems

B.1. Proof of Theorem 13

Proof. To prove Theorem 13, we construct a simulator S

such that for any nonuniform PPT environment Z , the fol-
lowing ensembles are indistinguishable: (i) the real execution
execΠ1,N

E−OT,A ,Z , where the parties P ≔ fP1, P2g run protocol

Π1,N
E−OT and the corrupted party is controlled by a dummy

adversary A who simply forwards messages from/to Z ,
and (ii) the ideal execution execF1,N

U−OT,S ,Z
, where the parties

P1 and P2 interact with functionality F1,N
U−OT in the ideal

world and the corrupted party is controlled by the simulator
S . We consider following cases.

Case 1. Sen is corrupted; Rec is honest.
Simulator. The simulator S internally runs A , forward-

ing messages to/from the environment Z . S simulates the
interface of F1,N

U−OT as well as honest Rec. In addition, the
simulator S simulates the following interactions with A :

(i) Upon receiving ðReceiveNotify, sid, ssidÞ from the
external functionality F1,N

U−OT and receiving ðSend,
sid, ssid, cÞ from the environment Z for Sen, the
simulator S sends ðSend, sid, ssidÞ to F1,N

U−OT, it then

Table 4: Running times in milliseconds of the triple generation protocol with different OT protocols.

Protocol
Num

104 105 106 107 104 105 106 107

LAN WAN

[10] 39 97 452 3203 515 903 4106 32072

[11] 35 91 446 3193 496 884 4098 31723

[12] 46 106 465 3210 436 843 4048 31658

Ours 68 128 490 3238 464 871 4086 31814

21Wireless Communications and Mobile Computing



receives ðSendNotify, sid, ssidÞ and ðSend, sid, ssid,
fkigi∈½N�Þ from F1,N

U−OT. For i ∈ ½N�, S picks random
ri ⟵G, and it sends frigi∈½N� to Sen

(ii) For i ∈ ½N�, when Sen queries the KDF for the i-th
time, S returns ki

Indistinguishability. The indistinguishability is proven
through a series of hybrid worlds H 0,⋯,H 3.

Hybrid H 0: it is the real protocol execution.
Hybrid H 1:H 1 is the same asH 0 except that inH 1, the

simulator S receives fkigi∈½N� for corrupted Sen from F1,N
U−OT

. The view of Sen is not changed since Rec behaves exactly
the same.

Hybrid H 2: H 2 is the same as H 1 except that in H 2,
Rec picks random ri ⟵G, for i ∈ ½N�. In H 1, rc =mA −
hashGc ðfrigi≠cÞ, where hashGc ðfrigi≠c should be indistin-
guishable from a random element and serve as a one-
time pad (OTP); therefore, rc in H 1 and H 2 should be
indistinguishable.

Hybrid H 3:H 3 is the same asH 2 except that inH 3, the
random oracle KDF returns ki for the i-th query. Because of
the key indistinguishability of the SM2 key agreement proto-
col, H 2 and H 3 should be indistinguishable.

The adversary’s view of H 3 is identical to the simulated
view. Therefore, execΠ1,N

E−OT,A ,Z and execF1,N
U−OT,S ,Z

are

indistinguishable.

Case 2. Rec is corrupted; Sen is honest.
Simulator. The simulator S internally runs A , forward-

ing messages to/from the environment Z . S simulates the
interface of F1,N

U−OT as well as honest Sen. In addition, the
simulator S simulates the following interactions with A :

(i) Upon receiving ðSendNotify, sid, ssidÞ from the exter-
nal functionality F1,N

U−OT and receiving ðReceive, sid,
ssid, cÞ from the environment Z for Rec, the simula-
tor S sends ðReceive, sid, ssid, cÞ to F1,N

U−OT, and it
then receives ðReceiveNotify, sid, ssidÞ and ðReceive,
sid, ssid, kcÞ from F1,N

U−OT. S invokes ðmB, tBÞ⟵
MsgGenðÞ, and it sends mB to Rec

(ii) When Rec queries the KDF, S returns kc

Indistinguishability. The indistinguishability is proven
through a series of hybrid worlds H 0,⋯,H 2.

Hybrid H 0: it is the real protocol execution.
Hybrid H 1:H 1 is the same asH 0 except that inH 1, the

simulator S receives mc for corrupted Rec from F1,N
U−OT.

The view of Rec is not changed since Sen behaves exactly
the same.

Hybrid H 2:H 2 is the same asH 1 except that inH 2, the
random oracle KDF returns kc when Rec queries it. Because
of the key indistinguishability of the SM2 key agreement
protocol, H 1 and H 2 should be indistinguishable.

The adversary’s view of H 2 is identical to the simulated
view. Therefore, execΠ1,N

E−OT,A ,Z and execF1,N
U−OT,S ,Z

are

indistinguishable.

Case 3. Both Sen and Rec are corrupted.
Simulator. The simulator S internally runs A , forward-

ing messages to/from the environment Z .
Indistinguishability. This is a trivial case, since both Sen

and Rec are controlled by the adversary A .

B.2. Proof of Corollary 14

Proof. The simulator used to proof Corollary 14 is exactly
the same as the simulator used to proof Theorem 13.
Although the functionality F1,N

E−OT allows the simulator to
fix the corrupted party’s message, we never invoke the
ðFixMessage,⋯Þ instruction.

B.3. Proof of Theorem 19

Proof. To prove Theorem 19, we construct a simulator S

such that for any nonuniform PPT environment Z , the fol-
lowing ensembles are indistinguishable: (i) the real execution

execF
1,2
E−OT

Πtriple ,A ,Z , where the parties P ≔ fP1, P2g run protocol

Πtriple in the F1,2
E−OT-hybrid model and the corrupted party

is controlled by a dummy adversary A who simply forwards
messages from/to Z , and (ii) the ideal execution exe
cFtriple,S ,Z , where the parties P1 and P2 interact with function-

ality F triple in the ideal world and the corrupted party is con-
trolled by the simulator S . Since the protocol is symmetric,
we only consider the case where P1 is corrupted.

Simulator. The simulator S internally runs A , forwarding
messages to/from the environmentZ . S simulates the inter-
face of F1,2

E−OT as well as honest P2. In addition, the simulator
S simulates the following interactions with A :

(i) Upon receiving ðGenerateNotify, sid, ssid, P2Þ
from the external F triple, the simulator S sends
ðSendNotify, sid, ssid2Þ and ðReceiveNotify, sid, ssi
d1Þ to the adversary A on behalf of F1,2

E−OT. S also
sends ðGenerate, sid, P1Þ to F triple and receives
ðGenerateNotify, sid, P1Þ

(ii) Upon receiving ðSend, sid, ssid1Þ from P1 via the inter-
face of F1,2

E−OT, S sends ðSendNotify, sid, ssid1Þ to A

on behalf of F1,2
E−OT. Upon receiving ðFixMessage,

sid, ssid1, ðm1
0,m1

1ÞÞ from A via the interface of
F1,2

E−OT, S sets a1 =m1
0 ⊕m1

1, and it sends ðSend,
sid, ðm1

0,m1
1ÞÞ to P1 on behalf of F1,2

E−OT

(iii) Upon receiving ðReceive, sid, ssid2, b1Þ from P1 via
the interface of F1,2

E−OT, S sends ðReceiveNotify,
sid, ssid2Þ to A on behalf of F1,2

E−OT. Upon receiving
ðFixMessage, sid, ssid2,m2

b1
Þ fromA via the interface

22 Wireless Communications and Mobile Computing



of F1,2
E−OT, S sends ðReceive, sid,m2

b1
Þ to P2 on behalf

of F1,2
E−OT

(iv) S sets c1 ≔ a1∧b1 ⊕m1
0 ⊕m2

b1
, and it sends ðFixTriple,

sid, P1, ða1, b1, c1ÞÞ to F triple. It outputs whatever
F triple outputs

Indistinguishability. The indistinguishability is proven
through a series of hybrid worlds H 0,⋯,H 3.

Hybrid H 0: it is the real protocol execution.
Hybrid H 1:H 1 is the same asH 0 except that inH 1, the

simulator S simulates the functionality F1,2
E−OT, and it

receives b1 from P1 and m2
b1
,m1

0,m1
1 from the adversary A .

The view of P1 is not changed since S behaves exactly the
same as F1,2

E−OT.
Hybrid H 2:H 2 is the same asH 1 except that inH 2, the

simulator S sets a1 =m1
0 ⊕m1

1 and c1 ≔ a1∧b1 ⊕m1
0 ⊕m2

b1
,

and it sends ðFixTriple, sid, P1, ða1, b1, c1ÞÞ to the external
F triple to modify the triple. The view of P1 is not changed
since no message sent to P1 is changed.

Hybrid H 3:H 3 is the same asH 2 except that inH 3, the
output of P2 is directly from F triple. The output distribution
remains the same since (1) the simulator modifies ða1, b1, c1Þ
in H 2 to the values obtained by P1; (2) in both H 2 and H 3,
b2 is randomly picked; (3) inH 2, a2 =m2

0 ⊕m2
1, where one of

the values is randomly picked, and in H 3, a2 is randomly
picked; and (4) in both H 2 and H 3, it holds that ða1 ⊕ a2Þ
∧ðb1 ⊕ b2Þ = c1 ⊕ c2.

The adversary’s view of H 3 is identical to the simulated
view execFtriple ,S ,Z . Therefore, it is perfectly indistinguishable.

B.4. Proof of Theorem 21

Proof. To prove Theorem 21, we construct a simulator S

such that for any nonuniform PPT environment Z , the fol-
lowing ensembles are indistinguishable: (i) the real execution

execF
1,2
E−OT

ΠN ,length
triple ,A ,Z

, where the parties P ≔ fP1, P2g run protocol

ΠN ,length
triple in theF1,2

E−OT-hybrid model and the corrupted party
is controlled by a dummy adversary A who simply forwards
messages from/to Z , and (ii) the ideal execution exe
cFtriple ,S ,Z , where the parties P1 and P2 interact with function-

ality F triple in the ideal world and the corrupted party is con-
trolled by the simulator S . We consider the extreme case
where only P1 is not corrupted.

Simulator. The simulator S internally runs A , forwarding
messages to/from the environmentZ . S simulates the inter-
face of F1,2

E−OT as well as honest P1. In addition, the simulator
S simulates the following interactions with A :

(i) Upon receiving ðGenerateNotify, sid, ssid, P1Þ
from the external F triple, the simulator S sends
ðSendNotify, sid, ssid1,j,kÞ and ðReceiveNotify, sid,
ssid j,1,kÞ to the adversary A on behalf of F1,2

E−OT, for

j ≠ 1 and k ∈ ½length�. S also sends ðGenerate, sid, PjÞ
to F triple and receives ðGenerateNotify, sid, PjÞ, for
j ≠ 1

(ii) For j ≠ 1, k ∈ ½length�, j′ ∈ ½N� \ f1, jg:
(a) Upon receiving ðSend, sid, ssid j,1,kÞ from Pj via

the interface of F1,2
E−OT, S sends ðSendNotify, sid,

ssidj,1,kÞ to A on behalf of F1,2
E−OT. Upon

receiving ðFixMessage, sid, ssidj,1,k, ðmj,1,k
0 ,mj,1,k

1 ÞÞ
from A via the interface of F1,2

E−OT, S sends

ðSend, sid, ssidj,1,k, ðmj,1,k
0 ,mj,1,k

1 ÞÞ to Pj on behalf

of F1,2
E−OT

(b) Upon receiving ðReceive, sid, ssid1,j,k, bj½k�Þ
from Pj via the interface of F1,2

E−OT, S sends
ðReceiveNotify, sid, ssid1,j,kÞ to A on behalf of

F1,2
E−OT. Upon receiving ðFixMessage, sid, ssi

d1,j,k,m
1,j,k
bj½k�Þ from A via the interface of

F1,2
E−OT, S sends ðReceive, sid,m1,j,k

bj½k�Þ to P2 on

behalf of F1,2
E−OT

(c) Upon receiving ðSend, sid, ssidj,j′,kÞ from Pj via

the interface of F1,2
E−OT, S sends ðSendNotify, sid,

ssidj,j′,kÞ toA on behalf ofF1,2
E−OT. Upon receiving

ðReceive, sid, ssidj,j′,k, bj′½k�Þ from Pj′ via the inter-

face of F1,2
E−OT, S sends ðReceiveNotify, sid, ssi

dj,j′,kÞ to A on behalf of F1,2
E−OT. Upon receiving

ðFixMessage, sid, ssid j,j′,k, ðmj,j′,k
0 ,mj,j′,k

1 ÞÞ from A

via the interface of F1,2
E−OT, S sends ðSend, sid,

ssidj,j′,k, ðmj,j′,k
0 ,mj,j′,k

1 ÞÞ to Pj and ðReceive, sid,
ssidj,j′,k,m

j,j′,k
bj′½k�Þ to Pj′ on behalf of F1,2

E−OT

(iii) S picks random r1,j,k ⟵ f0, 1glength, for j ≠ 1, k ∈
½length�. It then sends fr1,j,kgk∈½length� to Pj, for j ≠ 1

(iv) For j ≠ 1, upon receiving frj,1,kgk∈½length� from Pj for

P1, S computes aj = r j,1,1 −mj,1,1
0 +mj,1,1

1 mod 2length.
After that, S computes rj,j′,k ≔ aj +mj,j′,k

0 −mj,j′,k
1

mod 2length, for j ≠ 1, j′ ∈ ½N� \ f1, jg, k ∈ ½length�.
Subsequently, S computes sj′,j,k ≔mj′,j,k

bj½k� + bj½k� ·
rj′ ,j,k mod 2length, for j ≠ 1, j′ ≠ j, k ∈ ½length�. At the
end, S computes cj = aj · bj + ð∑j′≠j∑kðsj′ ,j,k −mj,j′ ,k

0 Þ
· 2k−1Þ mod 2length, and it sends ðFixTriple, sid, Pj,
ðaj, bj, cjÞÞ to F triple, for j ≠ 1. It outputs whatever
F triple outputs

Indistinguishability. The indistinguishability is proven
through a series of hybrid worlds H 0,⋯,H 4.

23Wireless Communications and Mobile Computing



Hybrid H 0: it is the real protocol execution.
Hybrid H 1:H 1 is the same asH 0 except that inH 1, the

simulator S simulates the functionality F1,2
E−OT to extract

fbjgj≠1 and obtains fmj,j′,k
0 ,m1 j, j′, kgj≠1,j′≠j,k∈½length� and

fm1,j,k
bj½k�gj≠1,k∈½length�. The view of P1 is not changed since S

behaves exactly the same as F1,2
E−OT.

Hybrid H 2:H 2 is the same asH 1 except that inH 2, the
simulator S computes faj, cjgj≠1 using the knowledge of

fbjgj≠1, fm
j,j′,k
0 ,mj,j′,k

1 gj≠1,j′≠j,k∈½length�, fm1,j,k
bj½k�gj≠1,k∈½length�, and

fr1,j,k, rj,1,kgj≠1,k∈½length�. It then sends ðFixTriple, sid, Pj, ðaj,
bj, cjÞÞ to F triple to the external F triple to modify the triple,
for j ≠ 1. The view of P1 is not changed since no message
sent to P1 is changed.

Hybrid H 3:H 3 is the same asH 2 except that inH 3, the
simulator S picks random r1,j,k ⟵ f0, 1glength, for j ≠ 1,
k ∈ ½length�, instead of computing r1,j,k ≔ a1 +m1,j,k

0 −m1,j,k
1

mod 2length. The views of the other parties inH 2 andH 3 have

the same distribution since one of m1,j,k
0 ,m1,j,k

1 is uniformly
random.

Hybrid H 4:H 4 is the same asH 3 except that inH 4, the
output of P1 is directly from F triple. The output distribution
remains the same since (1) the simulator modifies ðaj, bj, cjÞ
in H 3 to the values obtained by Pj; (2) in both H 3 and H 4,
a1 is randomly picked; (3) in both H 3 and H 4, b1 is
randomly picked; and (4) in both H 3 and H 4, it holds that
ð∑iaiÞ · ð∑ibiÞ ≡ ∑ici. The adversary’s view ofH 4 is identical
to the simulated view. Therefore, it is perfectly
indistinguishable.

Data Availability

The data used in the submitted manuscript are available by
email contacting the corresponding author.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work is supported by the National Key R&D Program
of China (No. 2021YFB3101601) and the National Natural
Science Foundation of China (Grant No. 62072401 and
No. 62232002). It is also supported by the “Open Project
Program of Key Laboratory of Blockchain and Cyberspace
Governance of Zhejiang Province”. This project is supported
by Input Output (iohk.io).

References

[1] K. Gulati, R. S. K. Boddu, D. Kapila, S. L. Bangare,
N. Chandnani, and G. Saravanan, A Review Paper on Wireless
Sensor Network Techniques in Internet of Things (IoT), vol. 51,
Materials Today: Proceedings, 2022.

[2] M.-k. Choi, R. J. Robles, C.-h. Hong, and T.-h. Kim, “Wireless
network security: vulnerabilities, threats and countermea-
sures,” International Journal of Multimedia and Ubiquitous
Engineering, vol. 3, no. 3, pp. 77–86, 2008.

[3] A. Kavianpour and M. C. Anderson, “An overview of wireless
network security,” in 2017 IEEE 4th International Conference
on Cyber Security and Cloud Computing (CSCloud), pp. 306–
309, New York, NY, USA, June 2017.

[4] Z. Hu, L. Wang, L. Qi, Y. Li, and W. Yang, “A novel wireless
network intrusion detection method based on adaptive syn-
thetic sampling and an improved convolutional neural net-
work,” IEEE Access, vol. 8, pp. 195741–195751, 2020.

[5] P. Manickam, K. Shankar, E. Perumal, M. Ilayaraja, and K. S.
Kumar, “Secure data transmission through reliable vehicles in
vanet using optimal lightweight cryptography,” in Cybersecurity
and secure information systems, pp. 193–204, Springer, 2019.

[6] M. Šarac, N. Pavlović, N. Bacanin, F. al-Turjman, and
S. Adamović, “Increasing privacy and security by integrating
a blockchain secure interface into an iot device security gate-
way architecture,” Energy Reports, vol. 7, pp. 8075–8082, 2021.

[7] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty
Computation and Secret Sharing, Cambridge University Press,
2015.

[8] A. C. Yao, “Protocols for secure computations,” in 23rd annual
symposium on foundations of computer science (sfcs 1982),
pp. 160–164, Chicago, IL, USA, November 1982.

[9] J. Kilian, “Founding crytpography on oblivious transfer,” in
Proceedings of the twentieth annual ACM symposium on The-
ory of computing, pp. 20–31, Chicago, Illinois, USA, 1988.

[10] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,”
in Proceedings of the twelfth annual ACM-SIAM symposium on
Discrete algorithms, pp. 448–457, Washington, DC, USA,
2001.

[11] T. Chou and C. Orlandi, “The simplest protocol for oblivious
transfer,” in Progress in Cryptology – LATINCRYPT 2015,
pp. 40–58, Springer, 2015.

[12] D. Masny and P. Rindal, “Endemic oblivious transfer,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pp. 309–326, London, UK,
November 2019.

[13] S. Garg, Y. Ishai, and A. Srinivasan, “Two-round mpc:
information-theoretic and black-box,” in Theory of Cryptogra-
phy. TCC 2018, pp. 123–151, Springer, 2018.

[14] I. McQuoid, M. Rosulek, and L. Roy, “Minimal symmetric
pake and 1-out-of-n ot from programmable-once public func-
tions,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pp. 425–442, Octo-
ber 2020.

[15] I. McQuoid, M. Rosulek, and L. Roy, “Batching base oblivious
transfers,” in Advances in Cryptology – ASIACRYPT 2021.
ASIACRYPT 2021, pp. 281–310, Springer, 2021.

[16] D. Mahto and D. K. Yadav, “RSA and ECC: a comparative
analysis,” International Journal of Applied Engineering
Research, vol. 12, no. 19, pp. 9053–9061, 2017.

[17] M. Bafandehkar, S. M. Yasin, R. Mahmod, and Z. M. Hanapi,
“Comparison of ECC and RSA algorithm in resource con-
strained devices,” in 2013 international conference on IT con-
vergence and security (ICITCS), pp. 1–3, Macao, China,
December 2013.

[18] Standing Committee of the National People’s Congress, “Pub-
lic key cryptographic algorithm SM2 based on elliptic curves,”

24 Wireless Communications and Mobile Computing



April 2022, https://www.oscca.gov.cn/sca/xxgk/2010-12/17/
1002386/files/b791a9f908bb4803875ab6aeeb7b4e03.pdf.

[19] State Cryptography Administration of China, “Cryptography law
of the People’s Republic of China,” April 2022, http://www.npc
.gov.cn/npc/c30834/201910/6f7be7dd5ae5459a8de8baf36296bc74
.shtml.

[20] J. Garay, Y. Ishai, R. Ostrovsky, and V. Zikas, “The price of low
communication in secure multi-party computation,” in
Advances in Cryptology – CRYPTO 2017. CRYPTO 2017,
pp. 420–446, Springer, 2017.

[21] C. Gentry, S. Halevi, H. Krawczyk et al., “YOSO: you only
speak once,” in Advances in Cryptology – CRYPTO 2021,
pp. 64–93, Springer, 2021.

[22] G. Asharov, A. Jain, A. López-Alt, E. Tromer,
V. Vaikuntanathan, and D. Wichs, “Multiparty computation
with low communication, computation and interaction via
threshold FHE,” in Advances in Cryptology – EUROCRYPT
2012, pp. 483–501, Springer, 2012.

[23] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly
multiparty computation on the cloud via multikey fully homo-
morphic encryption,” in Proceedings of the forty-fourth annual
ACM symposium on Theory of computing, pp. 1219–1234, New
York, USA, May 2012.

[24] P. Mukherjee and D.Wichs, “Two round multiparty computa-
tion via multi-key FHE,” in Advances in Cryptology – EURO-
CRYPT 2016, pp. 735–763, Springer, 2016.

[25] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in
Advances in Cryptology – CRYPTO 2012. CRYPTO 2012,
pp. 643–662, Springer, 2012.

[26] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling
and efficient maliciously secure two-party computation,” in
Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, pp. 21–37, Dallas, Texas, USA,
October 2017.

[27] X. Wang, S. Ranellucci, and J. Katz, “Global-scale secure mul-
tiparty computation,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pp. 39–56, Dallas, Texas, USA, October 2017.

[28] H. Carter, B. Mood, P. Traynor, and K. R. B. Butler, “Secure
outsourced garbled circuit evaluation for mobile devices,” in
USENIX Security, pp. 289–304, USENIX Association, 2013.

[29] D. Demmler, T. Schneider, and M. Zohner, “Ad-hoc secure
two-party computation on mobile devices using hardware
tokens,” in 23rd USENIX Security Symposium (USENIX Secu-
rity 14), pp. 893–908, San Diego, CA, USA, 2014.

[30] S. Felsen, Á. Kiss, T. Schneider, and C. Weinert, “Secure and
private function evaluation with intel SGX,” in Proceedings of
the 2019 ACM SIGSAC Conference on Cloud Computing Secu-
rity Workshop, pp. 165–181, London, UK, November 2019.

[31] Y. Lu, B. Zhang, H.-S. Zhou, W. Liu, L. Zhang, and K. Ren,
“Correlated randomness teleportation via semi-trusted hard-
ware—enabling silent multi-party computation,” in Computer
Security – ESORICS 2021, pp. 699–720, Springer, 2021.

[32] R. Anderson and M. Kuhn, “Low cost attacks on tamper resis-
tant devices,” in Security Protocols, pp. 125–136, Springer,
1997.

[33] P. Kocher, J. Horn, A. Fogh et al., “Spectre attacks: exploiting
speculative execution,” in 2019 IEEE Symposium on Security
and Privacy (SP), pp. 1–19, San Francisco, CA, USA, May
2019.

[34] R. Canetti, “Universally composable security: a new paradigm
for cryptographic protocols,” in Proceedings 42nd IEEE Sym-
posium on Foundations of Computer Science, pp. 136–145,
Newport Beach, CA, USA, October 2001.

[35] M. Bellare and P. Rogaway, “Random oracles are practical: a par-
adigm for designing efficient protocols,” in Proceedings of the 1st
ACM Conference on Computer and Communications Security -
CCS '93, pp. 62–73, Fairfax, Virginia, USA, December 1993.

[36] R. Canetti and H. Krawczyk, “Universally composable notions
of key exchange and secure channels,” in Advances in Cryptol-
ogy — EUROCRYPT 2002, pp. 337–351, Springer, 2002.

[37] O. Goldreich, S. Micali, and A. Wigderson, “How to play any
mental game,” in Proceedings of the nineteenth annual ACM
conference on Theory of computing - STOC '87, New York,
NY, USA, January 1987.

[38] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th
Annual Symposium on Foundations of Computer Science (sfcs
1986), pp. 162–167, Toronto, ON, Canada, October 1986.

[39] A. Yang, J. Nam, M. Kim, and K.-K. R. Choo, “Provably-secure
(Chinese government) SM2 and simplified SM2 key exchange
protocols,” The Scientific World Journal, vol. 2014, Article ID
825984, 8 pages, 2014.

[40] M. Bellare and P. Rogaway, “Entity authentication and key dis-
tribution,” in Advances in Cryptology— CRYPTO’ 93, pp. 232–
249, Springer, 1993.

[41] M. Bellare and P. Rogaway, “Provably secure session key distri-
bution: the three party case,” in Proceedings of the twenty-
seventh annual ACM symposium on Theory of computing -
STOC '95, pp. 57–66, Las Vegas, Nevada, USA, May 1995.

[42] D. Beaver, “Correlated pseudorandomness and the complexity
of private computations,” in Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing - STOC '96,
pp. 479–488, Philadelphia, Pennsylvania, USA, July 1996.

[43] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More
efficient oblivious transfer extensions with security for mali-
cious adversaries,” in Advances in Cryptology – EUROCRYPT
2015, pp. 673–701, Springer, 2015.

[44] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending obliv-
ious transfers efficiently,” inAdvances in Cryptology - CRYPTO
2003, pp. 145–161, Springer, 2003.

[45] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More
efficient oblivious transfer and extensions for faster secure
computation,” in Proceedings of the 2013 ACM SIGSAC confer-
ence on Computer & communications security - CCS '13,
pp. 535–548, Berlin, Germany, November 2013.

[46] M. Keller, E. Orsini, and P. Scholl, “Actively secure ot exten-
sion with optimal overhead,” in Advances in Cryptology –
CRYPTO 2015. CRYPTO 2015, pp. 724–741, Springer, 2015.

[47] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, “Secure two-party
threshold ECDSA from ECDSA assumptions,” in 2018 IEEE
Symposium on Security and Privacy (SP), pp. 980–997, San
Francisco, CA, USA, May 2018.

[48] V. Kolesnikov and R. Kumaresan, “Improved ot extension for
transferring short secrets,” in Advances in Cryptology –
CRYPTO 2013, pp. 54–70, Springer, 2013.

[49] M. Orrù, E. Orsini, and P. Scholl, “Actively secure 1-out-of-n ot
extension with application to private set intersection,” in Topics
in Cryptology – CT-RSA 2017, pp. 381–396, Springer, 2017.

[50] A. Fiat and A. Shamir, “How to prove yourself: practical solu-
tions to identification and signature problems,” in Advances in
Cryptology — CRYPTO’ 86, pp. 186–194, Springer, 1986.

25Wireless Communications and Mobile Computing

https://www.oscca.gov.cn/sca/xxgk/2010-12/17/1002386/files/b791a9f908bb4803875ab6aeeb7b4e03.pdf
https://www.oscca.gov.cn/sca/xxgk/2010-12/17/1002386/files/b791a9f908bb4803875ab6aeeb7b4e03.pdf
http://www.npc.gov.cn/npc/c30834/201910/6f7be7dd5ae5459a8de8baf36296bc74.shtml
http://www.npc.gov.cn/npc/c30834/201910/6f7be7dd5ae5459a8de8baf36296bc74.shtml
http://www.npc.gov.cn/npc/c30834/201910/6f7be7dd5ae5459a8de8baf36296bc74.shtml


[51] D. Beaver, “Efficient multiparty protocols using circuit ran-
domization,” in Advances in Cryptology — CRYPTO ’91,
pp. 420–432, Springer, 1991.

[52] M. Chase and P. Miao, “Private set intersection in the internet
setting from lightweight oblivious PRF,” in Advances in Cryp-
tology – CRYPTO 2020, pp. 34–63, Springer, 2020.

[53] D. Beaver, “Precomputing oblivious transfer,” in Advances in
Cryptology — CRYPT0’ 95, pp. 97–109, Springer, 1995.

[54] W. Diffie and M. Hellman, “New directions in cryptography,”
IEEE Transactions on Information Theory, vol. 22, no. 6,
pp. 644–654, 1976.

26 Wireless Communications and Mobile Computing


	Efficient Secure Computation from SM Series Cryptography
	1. Introduction
	1.1. Our Contribution

	2. Related Work
	3. Preliminaries
	3.1. Notations
	3.1.1. Elliptic Curve Cryptography Notation

	3.2. Security Definition
	3.2.1. The Ideal World
	3.2.2. Adversary Models
	3.2.3. Model of Protocol Execution
	3.2.4. Random Oracle
	3.2.5. Public Key Infrastructure

	3.3. One-Round Key Agreement Protocol
	3.4. Programmable-Once Public Function
	3.5. Oblivious Transfer
	3.6. Private Set Intersection

	4. SM Series Cryptography
	4.1. SM3 Hash Function and Key Derivation Function
	4.2. SM4 Block Cipher Algorithm
	4.3. SM2 Key Agreement Protocol

	5. Construct Oblivious Transfer Using SM
	5.1. Oblivious Transfer from SM2 Key Agreement
	5.2. Oblivious Transfer Extension
	5.2.1. Batching Base OT
	5.2.2. OT Extension in Semi-Honest Setting.
	5.2.3. OT Extension in Malicious Setting.


	6. Generate the Beaver Triple
	6.1. Two-Party Beaver Triple Generation
	6.2. Multiparty Multiplication Triple Generation

	7. Private Set Intersection from OT
	7.1. Adversary

	8. Implementation and Benchmarks
	8.1. Experimental Setup
	8.2. Oblivious Transfer Evaluation
	8.3. Triple-Generation Evaluation

	9. Conclusion
	Appendix
	A. Functionalites
	A.1. Random Oblivious Transfer

	B. Proof of Theorems
	B.1. Proof of Theorem 13
	B.2. Proof of Corollary 14
	B.3. Proof of Theorem 19
	B.4. Proof of Theorem 21

	Data Availability
	Conflicts of Interest
	Acknowledgments



