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This paper presents a novel iterative reliability-based bit flipping (BF) algorithm for decoding low-density parity-check codes. The
new decoder is a single BF algorithm called two-round selection -based bit flipping. It introduces the idea of a two-round selection
of the flipped bit, based successively on hard and soft received channel values. In the first stage, a set of unreliable bits is identified,
and then a second selection is used, to pick out among them the bit to flip. In the second round of selection, the initial belief about
received signals, contributes efficiently to selecting the best candidate bit. We demonstrate through simulations over the binary-
input additive white Gaussian noise channel and the Rayleigh fading channel that the proposed algorithm exhibits better decoding
performance when compared with some well-known soft decision BF algorithms. A complexity analysis of the proposal and a
comparison to other BF decoders are also presented.

1. Introduction

Error-correcting codes (ECC) are used to control errors dur-
ing data transmission. The fundamental principle of ECC is
to add redundant bits to the transmitted data in the emission,
while in the reception we use a decoding algorithm to detect
and correct errors occurring over noisy communication
channels. The low-density parity-check (LDPC) codes [1]
are currently considered one of the best next generation
ECC that allow data transmission to reach Shannon’s limit
[2]. These codes were first introduced by Gallager [1, 3] in his
pioneering Ph.D. thesis in 1962. In 1996, the LDPC codes
were rediscovered by MacKay and Neal [4] who brought
them back into prominence. When the sum-product algo-
rithm (SPA) [5] is used for decoding, it has shown near-
Shannon’s limit-capacity performance. Many state-of-the-
art communication systems adopt the LDPC codes in their
standards, such as 5G network systems, second-generation
satellite broadcasting systems (DVB-S2), and IEEE 802.11
systems.

LDPC codes can be decoded by many well-known decod-
ing algorithms [6] such as bit flipping (BF) algorithm, and

SPA algorithm [7, 8]. The BF algorithm, proposed by Galla-
ger [1, 3], is a hard decision algorithm that flips a set of bits
based on the values computed by the flipping function (FF)
for each iteration. Even if the BF algorithm is much simpler
than the probabilistic SPA algorithm (soft decision), its bit
error rate (BER) performance is far from optimal. Therefore,
many variants of Gallager’s BF algorithms have been pro-
posed to reduce the performance gap, but in some cases with
an increase in complexity. In this class of decoders we find
the candidate bit-based bit flipping (CBBF) [9], the weighted
candidate bit based bit-flipping (WCBBF) [10], and the sin-
gle bit flipping (SBF) [11]. In CBBF, a reliability of unsatis-
fied parity-check equations is calculated in addition to the
reliability of each bit. For WCBBF decoding, the authors
used a weighted reliability of the parity-check equations,
and the weights are prefixed integers. The SBF [11] decoder
flips a single bit chosen carefully in each iteration. All of these
decoders belong to hard decision variants of the original
Gallager’s BF algorithm.

Nevertheless, for the hard decision decoding algorithms,
considerable performance degradation is noticed compared
to the soft decision algorithms. That is why BF techniques
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moved toward the category of simplified soft decision decod-
ing algorithms. The latter use not only hard information but
also soft information during the decoding process. The work
on this class of decoding algorithm starts with the weighted
bit flipping (WBF) decoder [12]. Algorithms in this class
allow improvements in performance without a large increase
in complexity. Other algorithms, following the approach of
WBF, tried to improve the reliability metric and/or the
method of selecting the flipped bits (the FB). They achieve
different degrees of enhancement fromWBF in performance
and convergence rate. We quote in this class-modified
weighted bit flipping (MWBF) [13], reliability-ratio-based
weighted bit-flipping algorithm (RRWBF) [14], gradient
descent bit flipping (GDBF) [15, 16], and the dynamic
weighted bit-flipping decoding algorithms (DWBF) [17].

This paper introduces a new reliability-bit based bit-
flipping algorithm for decoding LDPC codes called two-
round selection-based bit flipping (TRSBF). We show here-
after that the proposed algorithm achieves good tradeoffs
between BER performance and decoding complexity.

Our decoder is not in the class of variants of the WBF
decoder, but it is indeed a soft decoder. At each iteration, a
selection in two rounds is used to pick out the bit to flip.
More precisely, first-round selection uses only hard decisions
to form a candidate pool. The candidate bits selected in this
round are those contained in more than some fixed number
of unsatisfied parity-check equations. In the second round,
the best candidate bit, which is the closest to the received
word, is selected from the candidate pool and flipped. Here,
the neighborhood is calculated in terms of Euclidean dis-
tance from the received word. At each iteration of our
decoder, only a single bit will be flipped.

The remainder of this paper is organized as follows: in
Section 2, we will present an overview of the BF algorithm and
its variants. Section 3 provides details of the proposed soft
information BF algorithm. The simulation results and thresh-
old optimization are presented in Section 4. In Section 5, the
decoding complexity comparison is discussed. Finally, con-
clusions are drawn in Section 6.

2. Bit Flipping Algorithm and Its Variants

2.1. Preliminaries. Let C a binary LDPC code of length n. C is
defined by the null space of a parity-check matrix H= [hj, k]
with m rows and n columns. The code C is said to be a
regular LDPC code if the matrix H has constant column
weight dc and constant row weight dr and is said to be irreg-
ular otherwise.

We assume that code words c= (c0, c1…cn− 1) obtained
at the output of the encoder are modulated by a binary phase
shift keying (BPSK) modulator and transmitted over a binary
input AWGN channel with a variance σ2. The sequence r=
(r0, r1… rn− 1) stands for the sequence of soft channel values
obtained at the receiver’s output. The hard-decision infor-
mation z= (z0, z1… zn− 1) associated with the sequence r is
as follows:

zi ¼
1; if ri ≥ 0

0; else

(
: ð1Þ

We introduce the sequence bz as the bipolar value
sequence corresponding to the hard decision sequence z
and define it as follows:

bz ≜ 2z0 − 1; 2z1 − 1;…; 2zn−1 − 1ð Þ: ð2Þ

The syndrome s defined by s= z.HT is calculated at the
first stage of the decoder. If the syndrome s= z.HT= 0, we
can say that z is the most likely transmitted codeword. Oth-
erwise, the decoding process begins.

We denote N (j)= {k, 0≤ k≤ n–1: hj,k= 1} the set of
code bits that participate in the jth parity-check equation,
and M (k)= {j, 0≤ j≤m–1: hj,k= 1} the set of checks that
contain the kth code bit.

2.2. Bit Flipping Algorithm. A typical BF algorithm (GBF)
[1, 3] is a simple hard-decision algorithm that flips the bits
involved in a large number of unsatisfied check equations
that exceed a threshold (T) for LDPC codes, because they are
most probably incorrect bits. The algorithm is terminated
once all the parity-check equations are satisfied, which
means a valid code word has been found or the maximum
number of iterations, pmax is reached. The algorithm,
requires only integer operations for decoding and can there-
fore be easily implemented by an electronic circuit.

The main part of the standard BF algorithm is the calcu-
lation of the flipping metric for each bit and each iteration
called the FF. The FF values allow for tentative bit decisions
and depend on the binary-value checksums and on the bits
connected with the check equations. For the BF algorithm,
the FF can be equivalently expressed in two ways as the
following formulas:

e 1ð Þ
k ¼ ∑

j2M kð Þ
2sj − 1
À Á

; ð3Þ

vk ¼ ∑
m−1

j¼0
<sj; hj;k> : ð4Þ

The quantity vk is the scalar product of the syndrome and
the kth column of H and it represents the number of unsatis-
fied parity checks containing the kth bit. It gives information
about the reliability of the kth received bit. It is easy to prove
that:

vk ¼ ∑
j2M kð Þ

sj: ð5Þ

The sequence v= (v0, v1… vn–1) is the so-called reliability
profile of the received sequence r (or more precisely of the
hard version z) [18].
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The steps of a standard BF (GBF) algorithm are described
in the Algorithm 1 as follows:

2.3. Single Bit Flipping Algorithm. The single bit flipping
(SBF) algorithm [11] is a variant of the standard BF that
stays within the scope of hard-decision decoding algorithms.
In each iteration, SBF flips one elected bit to avoid flipping
correct bits, in contrast to the standard BF, which flips many
bits each iteration, and thus may need a longer time for
convergence.

The SBF algorithm uses Equation (5) for computing FF
values. It did not use a threshold but needs to find a maxi-
mum of FF values. The steps 3 and 4 of the SBF are as
follows:

(i) Step 3′: Find the index k0 = argmax (vk) where k
belongs to {0,.., n–1}

(ii) Step 4′: Flip the bit zk0 , p ← p+ 1.

The SBF results in better performance than the standard
BF and converges toward the final solution with a lower
number of iterations [11].

2.4. Candidate Bit Based Bit Flipping. The CBBF algorithm
[9] uses the correlation data between the column vectors of
the parity-check matrix and the syndrome vector to decode.
It has minimal decoding complexity and does not require
soft information.

The algorithm has a new parameter δ> 0 which is an
integer valued threshold for a decision on candidate bits.
We calculate vkin the Equation (5), If vk > δ, then vk is
marked as a candidate bit for BF.

The steps 3–6 of the CBBF are as follows:

(i) Step 3′’: Find umax=maxi ui. If umax ≤ δ, then ter-
minate the decoding procedure.

(ii) Step 4′’: Let cm be the number of candidate bits
included in the m-th parity check equation and cal-
culate wm= cm− 1 for m= 1, 2, …, M.

(iii) Step 5′’: For i= 1, 2,…, M with ui= umax, calculate ri
by:

ri ¼ ∑
m2M ið Þ

wm: ð6Þ

(iv) Step 6′’: Flip all bits vi with ri=mini ri and ui= umax.
Let l ← l+ 1. If l > lmax, then terminate the decod-
ing procedure. Go to Step 1.

2.5. Weighted Bit-Flipping Algorithm. The WBF algorithm
[12] is a variant of the BF algorithm, and it is considered a
soft decoder. In the algorithm, throughout the decoding pro-
cess, the weights of checks are decided by the soft received
channel values and remain unchanged. That is because the
weights reflect the decoder’s belief in the channel’s behavior.
The FF of the WBF algorithm can be expressed by the fol-
lowing general formula:

e 2ð Þ
k ¼ ∑

j2M kð Þ
2sj − 1
À Á

:rjmin; ð7Þ

where rjmin ¼minjrij is the minimum absolute of soft values
ri for the bits participating in the jth parity-check equation
(minimum for all indices i in the set N(j)).

The WBF algorithm combines the checksum values and
the reliability of received messages to make decisions, there-
fore, the algorithm yields better decoding performance when
compared with the BF algorithm.

2.6. Gradient Descent Bit-Flipping Algorithm. The GDBF
algorithm [15] derives its FF in Equation (7) by computing
the gradient of a nonlinear objective function instead of
using a weighted checksum-based FF, which is comparable
to the log-likelihood function of the bit decisions with check-
sum constraints.

The FF of the GDBF algorithm can be expressed by the
following general formula:

e 3ð Þ
k ¼ ∑

j2M kð Þ
2sj − 1
À Á

− rk bzkð Þ: ð8Þ

2.7. Noisy Gradient Descent Bit-Flipping Algorithm. In an
effort to avoid undesirable local maxima, the noisy GDBF
(NGDBF) [16] improves efficiency by adding a random
perturbation at each iteration.

The FF of the NGDBF algorithm can be expressed by the
following general formula:

Step 0: Initialize the parameters: p= 0 (p is the iteration counter) and T (depends on the variant of the algorithm).

Step 1: Compute s= (s0, s1… sm-1) ← z.HT. If s= 0, then stops the algorithm.

Step 2: Compute eð1Þk for all indices k.

Step 3: If max (eð1Þk )<T (or max(vk)<T), then stops the algorithm.

Step 4: Flip all bits zk, in the sequence z, with eð1Þk ≥ T, p ← p+ 1.

Step 5: If p> pmax, then stop the algorithm. Else go to Step 1.

ALGORITHM 1: Gallager BF algorithm.

Wireless Communications and Mobile Computing 3



e 4ð Þ
k ¼ qk þ w: ∑

j2M kð Þ
2sj − 1
À Á

− rk bzkð Þ; ð9Þ

where w2Rþ is a syndrome weight parameter and qk is a
Gaussian distributed random variable with zero mean and
variance σ2= η2N0/2, where 0< η< 1. All qk are independent
and identically distributed.

3. Proposed Bit-Flipping Algorithm

3.1. Motivation. All soft BF decoding algorithms combine
hard metrics with soft metrics to decide which bit to flip.
We believe that the magnitude of a received bit carries addi-
tional information on its reliability and can be used sepa-
rately for decision-making about it. We describe hereafter a
new algorithm based on a two-round selection strategy: the
TRSBF decoder. The latter is made up of two stages. The
first/second round selections are made by the first/second
stages, respectively. The proposed algorithm works as
follows (see Figure 1).

The first stage, consisting of FF processing, is based only
on hard information. This stage can be considered a filter for
the next processing step. On the other hand, the second stage
of processing is based on soft information. The first stage
passes a Set B of unreliable bit positions to the second stage.
In the second stage, no FF calculus is done. The processing in
the second stage provides a single bit (bit of position k0) to be
flipped. The two processes mentioned constitute a single
iteration of the algorithm. In contrast, the known soft BF
decoding algorithms combine, hard and soft information
into a unique metric for the FF.

3.2. The Proposed TRSBF Algorithm. In the first stage, the
TRSBF algorithm calculates the check-based value vk about
regarding the symbol rk by FF in Equation (4). The value vk
represents the number of unsatisfied parity checks (UPC)
containing the bit zk. Then consider the set of bit positions
that satisfy the threshold condition denoted by:

B¼ k : vk ≥ T; 0 ≤ k<nf g; ð10Þ

where B is the set of bits in z that have the largest parity-
check failures. Thus, these bits are the less reliable ones.

The identification of Set B is the goal of the first stage of
our algorithm. Set B can be seen as a pool of good candidate
bits for a second selection.

A first step in the second stage consists of determining a
certain number of tentative decision sequences z(k). For every
k belonging to the Set B, a sequence z(k) is obtained from the
sequence z as follows:

z kð Þ
i ¼ zi þ 1; if i¼ k

zi else

(
: ð11Þ

Let bzðkÞ be the bipolar sequence corresponding to zðkÞ.
Then the TRSBF algorithm calculates the squared Euclid-

ean distance between the received soft sequence r and the
sequence bzðkÞ, as shown in Equation (12).

d2e r;bz kð ÞÀ Á¼ ∑
n−1

i¼0
ri − bz kð Þ

i

� �
2
for each index k 2 B: ð12Þ

But minimizing the squared Euclidean distance in
Equation (12) is the same as minimizing the set of Δk values,
with Δk defined as follows:

Δk ¼ ∑
i2B

ri − bz kð Þ
i

� �
2
for each index k 2 B: ð13Þ

A final step of the second stage of the algorithm consists
of finding the index k0 of the nearest sequence zðkÞ from the
received sequence r as shown by Equation (14):

k0 ¼ argmin Δkð Þ; k 2 B: ð14Þ

The position k0 is the selected bit position to be flipped in
the current iteration.

The steps of the TRSBF algorithm are described in the
Algorithm 2 as follows:

The first stage of the decoding algorithm consists of Steps
1 and 2 and the second stage consists of Steps 3 and 4. The
threshold T is to be optimized for each code (see Section 4.1).

One of the strengths of the proposed decoding algorithm
is that it can be used for regular LDPC codes as well as
irregular ones.

Hard info 
processing

(νk) Iteration

r

z

Final decision

k0
Soft info

processing
(Δk)  

Decision

B

FIGURE 1: Block diagram of the proposed algorithm.
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4. Simulation Results

In order to illustrate the decoding performance of the pro-
posed decoding algorithm, four regular LDPC codes (see
Table 1) are considered and used for the simulation: the
LDPC1, LDPC2, and LDPC4 are difference-set codes
(DSC) family [12], and the LDPC3 code is a pseudorandom
or Gallager code and was selected from MacKay’s online
encyclopedia [19].

We carried out extensive simulations using a communi-
cation chain implemented in language C. The communica-
tion chains contain an AWGN/Rayleigh channel and a BPSK
modulation/demodulator. The Monte Carlo method was
used for simulations.

The performance output is given in terms of bit error rate
(BER) and block error rate (BLER) as a function of signal-to-
noise ratio (SNR), with the default simulation’s parameters
outlined in Table 2.

4.1. Optimization of the Threshold. The threshold T of the
proposed decoding algorithm is optimized using simulation
results for the three chosen codes. The criterion for optimi-
zation is the BER performance at several SNRs. The commu-
nication chains contain an AWGN channel and a BPSK
modulation/demodulator. The Monte Carlo method was
used for simulations.

These values of SNR depend on the selected code. The
interval where T is located depends on the dc parameters of
the codes, but we always have Tϵ[1, dc].

Simulation results illustrate the behavior of the parame-
ters T for the proposed algorithm (see Figures 2–4) for three
codes.

By observing these figures, the best T for each code is
chosen. See Table 3 for the optimal values of the threshold
parameter for the three codes. These values are used for the
rest of this study.

1 2 3 4 5 6 7 8 9
10−7

10−6

10−4

10−5

10−3

10−2

10−1

T

BE
R

TRSBF SNR = 5
TRSBF SNR = 6

TRSBF SNR = 7

FIGURE 2: Optimization of T for LDPC1.

Step 0: Initialize the parameters: p¼ 0 and T.

Step 1: Compute s= (s0, s1… sm-1) ← z.HT. If s= 0, then stops the algorithm.

Step 2: Identify the set B: If B is empty then stops the algorithm.

Step 3: Compute Δk for each index k2B.

Step 4: Find the index k0 and flip the bit zk0 in z, p←p+ 1.

Step 5: If p > pmax, then stop the algorithm. Else go to Step 1.

ALGORITHM 2: TRSBF algorithm.

TABLE 1: Parameters of used LDPC codes.

Code Length (n) Dimension k’ m Rate dc
LDPC1 73 45 73 0.616 9
LDPC2 1,057 813 1,057 0.77 33
LDPC3 1,057 813 244 0.77 3
LDPC4 273 191 273 0.69 17

TABLE 2: Simulation parameters.

Simulation parameters Value

Min number of transmitted blocks 1,000
Min number of residual bit errors 200
Max number of iterations (pmax) 45

10−6

10−4

10−5

10−3

10−2

10−1

BE
R

10 1516 17 18 19 20 25 30
T

TRSBF SNR = 3
TRSBF SNR = 3.7

TRSBF SNR = 4.5

FIGURE 3: Optimization of T for LDPC2.
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From this observation, the best value of T is determined
by:

T ≈
dc
2

� �
: ð15Þ

Equation (15) comes from the following facts:
First, note that dc represents the maximum number of

participations of a bit in the parity-check equations and vk
represents the participation of a given bit in the parity-check
equations that are not satisfied.

Then the rule to put an index k of a bit zk every time vk ≥
T (when T≥ ddc=2e) in the Set B, is simply applying the
majority voting rule.

4.2. Performance Results for AWGN Channel. Figure 5
benchmarks our decoder against some known BF decoders
for the LDPC1 code. As shown in Figure 5 our decoder has a
better BER performance than SBF and a slight advantage
over GDBF. It presents coding gains of 0.95 and 0.2 dB at
BER of 3.10−5 compared to the SBF and GDBF, respectively.

Figure 6 shows results for the code LDPC2 where our
decoder achieves coding gains of 0.5 and 0.7 dB compared to
the GDBF and SBF algorithms, respectively at BER of 2.10−5.

Furthermore, our decoder presents a 0.1-dB coding gain
compared to the NGDBF for these codes, unlike for the
LDPC1 code, where we lose 0.6 dB of performance at BER
10−5. This observation may imply that longer codes will gain
a larger improvement over NGDBF.

Figure 7 compares our decoder to some known BF deco-
ders for the LDPC3 code. The figure shows that our decoder
outperforms other algorithms in terms of BER performance.
As TRSBF achieves, respectively, coding gains of 2.5, 1.9, 1,
and 1 dB compared to the BF, SBF, WBF, and CBBF at
BER 2.10−5.

Figure 8 benchmarks our decoder against some known
BF decoders for the LDPC4 code. As shown in Figure 8 our
decoder has a better BER performance than SBF and GDBF.
It presents coding gains of 1.4 and 0.65 dB at BER 10−5

compared to the SBF and GDBF respectively, and 0.2 dB of
performance loss against NGDBF.

The results highlight that it is important to save the
reliability values of received signals during the decoding

TRSBF SNR = 5
TRSBF SNR = 6

TRSBF SNR = 7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
T

10−6

10−4

10−5

10−3

10−2

10−1

BE
R

FIGURE 4: Optimization of T for LDPC3.

TABLE 3: Optimized threshold T.

Code dc T

LDPC1 9 5= ddc2e
LDPC2 33 18≈ddc2e
LDPC3 3 2 ¼ddc2e
LDPC4 17 9= ddc2e

1 2 3 4 5 6 7
SNR (dB)

SBF T = 1
SBF T = 1
GDBF

NGDBF
TRSBF
TRSBF

10−6

10−4

10−5

10−3

10−2

10−1

100

BE
R/

BL
ER

FIGURE 5: BER (solid) and BLER (dashed) performance comparison
of several decoders for LDPC1 code.

SBF T = 1
SBF T = 1
GDBF
GDBF

NGDBF
NGDBF
TRSBF
TRSBF

1 1.5 2 2.5 3 3.5 4 4.5 5
SNR (dB)

10−6

10−4

10−5

10−3

10−2

10−1

100
BL

ER
/B
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FIGURE 6: BER (solid) and BLER (dashed) performance comparison
of several decoders for LDPC2 code.
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process since they are the initial belief of the channel on
received signal reliability. In addition, the obtained results
show a correlation between the code length and the perfor-
mance of the proposed decoder.

4.3. Performance Results for Rayleigh Fading Channel. In
order to evaluate our new decoder, we have simulated its
performance in the Rayleigh fading channel and compared
it with the performances of GBF and SBF using the fourth
codes in Table 1.

The curves plotted in Figure 9 show that the performance
of our TRSBF decoder is better than the GBF and SBF ones.

It presents coding gains of 4.3 and 2.4 dB at BER 10−5 com-
pared to GBF and SBF, respectively, at BER 10−5.

Figure 10 benchmarks our decoder for the LDPC2 code.
As shown in Figure 10, our decoder has a better BER perfor-
mance than GBF and SBF. It presents coding gains of 4 and
2 dB at BER 10−5 compared to SBF and GDBF, respectively.

Figure 11 shows that our decoder outperforms other
algorithms in terms of BER performance for the LDPC3
code. As TRSBF achieves, respectively, a huge coding gain
of 1 and 8.5 dB compared to GBF and SBF at BER 4.10−5.

Figure 12 shows results for the LDPC4 code, where our
decoder achieves coding gains of 3 and 6 dB compared to the
GDBF and the SBF algorithms, respectively, at BER 10−5.

So, we have in the case of Rayleigh fading channel a
better performance gain behavior than the case of AWGN.

1 2 3 4 5 6 7 8 9
SNR (dB)

CBBF
SBF
BF

WBF
SPA
TRSBF

10−7

10−6

10−4

10−5

10−3

10−2

100

10−1

BE
R

FIGURE 7: BER performance comparison of several decoders for
LDPC3 code.
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10−5
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10−2

100

10−1
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R/

BL
ER

SBF T = 1
SBF T = 1
GDBF
GDBF

NGDBF
NGDBF
TRSBF
TRSBF

FIGURE 8: BER (solid) and BLER (dashed) performance comparison
of several decoders for LDPC4 code.

0 105 15 20
SNR (dB)
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GBF T = 5
SBF T = 1

TRSBF

FIGURE 9: BER performance comparison of several decoders for
LDPC1 code over the rayleigh channel.
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10−3
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R

GBF T = 18
SBF T = 1
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FIGURE 10: BER performance comparison of several decoders for
LDPC2 code over the rayleigh channel.
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5. Complexity Study

5.1. Analytic Complexity. Let C denoted by (n, k) (dr, dc) be a
regular binary LDPC code over GF (2). C is the null space of
an m× n parity-check matrix H= (Hm, n) which has dc 1

′s in
each column and dr 1

′s in each row with m= (n–k), and Itr
the average number of iterations.

Table 4 illustrates the complexity analysis of the BF algo-
rithms (FF). The table shows that the complexity is polyno-
mial in n, m, and Itr for all algorithms.

The soft algorithms (except the WBF) are more complex
compared to the hard BF variants. On the other hand, the
complexity of the proposed algorithm TRSBF and the GDBF
and NGDBF are identic; since m and n are fixed parameters,
the study of the average number of iterations (Itr) will deter-
mine which algorithm is more complex.

5.2. Average Number of Iterations. We analyze the average
number of iterations with respect to the SNR in order to
perform a numerical convergence analysis of the proposed
decoding scheme and compare it to the known BF variants
[20]. We consider the number of simulated transmitted
blocks in which at least 200 erroneous decoded words are
observed for each SNR to be N and the total number of
iterations used for decoding all the N blocks to be Pall with
Pmax= 50 for each block processed in this study.

The average number of iterations Pavg is obtained by the
following ratio formula:

Pavg ¼
Pall
N

: ð16Þ

The curves corresponding to the average number of
iterations for the LDPC1, LDPC2, and LDPC4 codes listed
in Table 1 with respect to the different SNRs are shown in
Figures 13–15, respectively. In Figure 13 the TRSBF decoder
presents a lower complexity in terms of the average number
of iterations than the SBF, GDBF, and NGDBF decoders.
This decoder also has an advantage in terms of BER perfor-
mance when compared with the SBF and GDBF decoders.
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FIGURE 11: BER performance comparison of several decoders for
LDPC3 code over the rayleigh channel.
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FIGURE 12: BER performance comparison of several decoders for
LDPC4 code over the rayleigh channel.

TABLE 4: The complexity of the BF algorithms.

Algorithms GBF, SBF WBF GDBF, NGDBF TRSBF

Complexity O (Itr. m.n) O (Itr. m.n) O (Itr. m.n2) O (Itr. m.n2)

0

5

10

15

20

25

30

35

40

45

50

SNR (dB)

IT
R

SBF
GDBF

NGDBF
TRSBF

1 1.5 2 2.5 3.5 4.5 5.53 4 5 6

FIGURE 13: Comparison of the average number of iterations of vari-
ous BF algorithms for LDPC1 code.
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In addition to the gain in BER performance of our
TRSBF decoder over the SBF, GDBF, and NGDBF decoders,
we can see clearly in Figure 14 that our TRSBF decoder
presents a modest advantage in terms of the average number
of iterations over the compared decoders except for the SBF.

In Figure 15, we can see that in the entire range of SNRs,
the TRSBF decoder needs fewer iterations to achieve conver-
gence than the GDBF and NGDBF decoders.

We can clearly see that the proposed decoding algorithm
requires fewer decoding iterations than other soft variants of
BF decoders; consequently, the proposed algorithm is less
complex than the GDBF and NGDBF when the analytic
complexity seen in Table 4 is taken into account; thus, the
TRSBF achieves fast convergence.

5.3. Cardinality of the Set B. We explore the average size of
the Set B with respect to the SNR for different codes (Table 1)
in order to investigate the complexity of the second-stage
processing of our decoder.

Figure 16 shows the average size of the Set B for each
code across the SNRs. We can see clearly that the average size
of Set B decreases as the SNR increases. Also, we can observe
for the two codes (with the same code length and rate),
LDPC2 and LDPC3 that the average size of the Set B
decreased in a fast way for the LDPC2 code compared to
the LDPC3 code, and this observation explains the good BER
performance given by the LDPC2 code compared to the
LDPC3 code and confirms the power of the DSC codes class
over the Gallager codes class.

5.4. Computational Complexity. To evaluate the computa-
tional complexity of the proposed decoding algorithm for
one iteration, we will denote δ=m.dr= n.dc the number of
1-entries in the parity-check matrix H and β the size of the
Set B (see Equation (10)).

Table 5 shows a comparison of the computational com-
plexities of several decoding algorithms for LDPC codes.

To compute the syndrome s of a received vector in Step 1
of the TRSBF algorithm? we need m.(dr-1)= δ-m binary
operations (BO). Then to identify the size of the Set B in
Step 2 we need n integer comparison (IC). In Step 3 of the
algorithm, the computation of Δk requires β real addition
(RA) and β real multiplication (RM). Thereafter, in Step 4,
finding the k0 requires β real comparison (RC) and flipping
the bit zk0 requires one binary operation (BO).

In Table 4, we can see that our decoder has two parts of
complexity. The first part, like the hard decoding algorithms
(BO, IA, and IC operations). The second part, like soft
decoding algorithms (RA, RC, and RM operations), There-
fore, to evaluate the complexity of our decoder, we need to
study the range of values for the β parameter (the average
size of the Set B).

In Figure 16, we have plotted the average size of the Set B
obtained for 1,000 erroneous received sequences versus
SNRs. Figure 16 also shows the average number of iterations
versus SNRs for the LDPC codes.

By considering the real complexity parts (RA, RC, and
RM) in Table 5 and the average size of the Set B shown in
Figure 8, we can conclude that the complexity of our decoder
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FIGURE 16: Average size of the Set B.
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FIGURE 14: Comparison of the average number of iterations of vari-
ous BF algorithms for LDPC2 code.
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FIGURE 15: Comparison of the average number of iterations of vari-
ous BF algorithms for LDPC4 code.
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is lower than that of WBF and its variants since δ= n.
dc>> n> > β, while our decoder provides a better perfor-
mance in terms of BER or BLER.

6. Conclusion

This paper proposes a new BF algorithm based on the reli-
ability of the received signal: TRSBF. The proposed algo-
rithm yielded better decoding performance than some
known BF algorithms for the studied LDPC codes.

The proposed algorithm uses a two-round selection
approach to get the bit to be flipped, by separating the
hard decision information from the soft one. In the first
round, only hard information is used, and its solutions are
refined by the second round, which is based on the soft
information. An advantage of our decoder is that it can be
applied to both regular and irregular LDPC codes.

The proposed algorithm achieves effective tradeoffs
between performance and decoding complexity.

The study of the complexity has proved that our algo-
rithm has a low complexity and fast convergence rate com-
pared to the other soft or hard decoders, either in terms of
iterations or computational complexity.

We believe this research’s findings invite more investiga-
tions on the performance of the proposed algorithm for
irregular the codes or codes with large blocklengths.
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