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In view of the problem of long migration time and low availability of VM (virtual machine) migration in MD (mobile devices) in
the MEC (mobile edge computing) environment, this paper designs a MD2N (Mobile Device to Network) model. This model no
longer uploads requests to the cloud center, but centers on the edge server, scheduling and selecting migration services through the
communication between the servers. And, a virtual machine migration strategy based on Markov decision and greedy algorithm is
proposed. Model the edge server based on its geographic location, imitating the traditional cellular network method, and then the
improved greedy algorithm is used to dynamically select the best edge device to migrate VM. Simulation and comparison
experiments show that the proposed scheme has small migration fluctuations, stable migration status, short migration time,
low average time delay, and high virtual machine migration availability after migration.

1. Introduction

With the explosive growth of the number of mobile devices
(MD) and the resulting large amount of data, cloud comput-
ing has not been able to meet user requirements in terms of
time delay and energy efficiency. Therefore, edge computing
[1–4] has achieved tremendous development as a supple-
mentary computing paradigm to overcome the above chal-
lenges. Among them, mobile edge computing (MEC), as a
product of the integration of the Internet and Communica-
tion Technology (ICT), has become a key technology for
the next generation of mobile networks [5, 6] enabling
mobile devices to distribute their computing tasks to servers
located on the “edge” of the radio access network [7], and it
creates more practical value while reducing core network
congestion, such as lower latency, location awareness, and
network context information. [8, 9].

Due to the limited coverage of edge servers and the ran-
dom mobility of users, sinking the computing power of
cloud servers to the edge will bring new challenges. For
example, when users are receiving continuous services, they
may roam in wireless areas served by different edge servers.

In order to ensure user satisfaction with service perfor-
mance, dynamic service migration needs to be considered.

If the MEC allows the MD to migrate its computing tasks
to the MEC server through the wireless access network, the
computing overhead and the time delay caused by mutual
communication must be considered at the same time. In order
to solve the above problems, this paper proposes a dynamic
programming algorithm based on Markov decision and
greedy algorithm. It selects computing nodes (local equip-
ment, edge server, and remote cloud) to run its services by pre-
dicting the behavior trajectory and migration needs of mobile
users. Use Markov model to deduce the location of MD, pre-
pare for its migration in advance, and then use greedy algo-
rithm to select the optimal migration strategy.

2. Related Work

Mobile edge computing has received more and more atten-
tion in recent years [10], especially some previous studies
that focused on service placement issues [11–13]. The issue
of user mobility management is a major challenge for service
placement in MEC. Existing mobility management work can
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be roughly divided into three categories. (1) Always migrate,
as long as the mobile device enters the new MEC server ser-
vice range, immediately migrate the computing task from
the source MEC server to the current MEC server. (2) Never
migrate, no matter how the mobile device moves, the calcu-
lation task is always executed on the original MEC server,
and communicates with the source server through the trans-
mission of information. (3) Partial migration, by weighing
the communication delay and migration time delay, and
making the optimal migration decision according to the
actual application situation. Obviously, the first method
reduces communication delays, but it will bring additional
migration costs, such as insufficient bandwidth usage, poten-
tial service interruption, or even handover failure, and the
second method will cause longer communication delays as
the network distance increases. Although the third method
has the highest benefit, it often consumes a lot of computing
resources when making a decision. Therefore, how to pay
the minimum cost when making a decision becomes the
main research goal.

The challenge mentioned above can be described as
dynamically keeping all services following the user when
the user moves, which will lead to the migration of VM.
Raad et al. [14] considered large-scale real-time VM migra-
tion, and evaluated the locator/identifier separation protocol
(LISP) based on flat message definition to improve migra-
tion efficiency. Machen et al. [15] proposed a three-layer ser-
vice migration protocol using Linux container (LXC) and
kernel-based virtual machine (KVM) technologies. Cerroni
and Callegati [16] designed sequential and parallel multiple
VMs and compared the performance of the two methods
to achieve parallel migration with lower latency but higher
resource consumption. Although the above methods can
solve the problems of time delay and dynamic migration,
the designed solution occupies more resources and cannot
be realized in the edge environment with limited resources.
In this paper, to adapt to the shortage of limited resources
in the edge environment, a sequential migration method is
used to migrate services.

The service migration method is a key component of the
right management in MEC [17–19]. When there is user
migration, it is difficult to decide what is the best choice to
migrate the running service. Although VM migration is
closer to the user’s location, it will cause an increase in cost.
Nadembega et al. [20] use a mobile-based prediction scheme
to balance execution overhead and transmission delay.
Wang et al. [21] place services by predicting the cost of
future data transmission, processing and service migration.
W. Zhang et al. [22] observe the correlation between band-
width and geographic location based on historical data,
and use this to predict user location to optimize wireless
transmission time.

But in actual operation, it is more difficult to accurately
predict the future information of MD based on historical
data, and it will cause a large computational overhead, and
may also cause a larger time delay in an edge-computing
environment. Taleb and Ksentini [23] used Markov chains
to analyze the possibility of user mobility. Ksentini et al.
[24] and Wang et al. [25] both tried to model the entire ser-

vice migration process and design the optimal migration
decision through the Markov decision process. The research
of T. Ouyang et al. [26] does not require any prior knowl-
edge about the future mobility of users, and uses Lyapunov
optimization to solve the service placement problem.

But, these works are mainly concentrated on the manage-
ment and optimization of service placement within the system,
and the scheduler understands complete system information.
In actual use, the scheduler may not necessarily have the future
location information of the mobile device, and it also faces the
uncertainty of edge server selection. In order to meet these
challenges, Sun et al. [27] proposed a learning-based service
placement framework, using the theory of MAB (multiarmed
bandit) to enable vehicles to provide their services by learning
the best neighboring vehicle selection.

Although the above method solves the problem of service
placement, it does not consider the time dependence of
sequential decisions when tasks are migrated from one server
to another. Sun et al. [28], user-centric EMM (energy-aware
mobility management) solution, continuously optimize the
time delay caused by wireless access and computing, and select
BS and MEC servers for users and when to handover. Alfakih
et al. [29] proposed a RL-SARSA (state-action-reward-state-
action algorithm based on reinforcement learning) to solve
the problem of resource management in edge servers, and
through the best foaming decision to minimize the system
cost, including energy consumption and calculation time
delay. This method is called SARSA based on offloading
decision (OD-SARSA).

Pavlos et al. [30] regarded the MEC server option as a
public resource pool with uncertain user returns, and local
computing as a security option for each user, following the
attributes of prospect theory, and using local computing in
the case of probabilistic uncertainty and uninstall overhead
options to develop the user’s prospect theory utility. The solu-
tion MIGRATE of Santa et al. [31] proposed the concept of
virtual mobile devices (vMDs). When the devices are moved
to different management domains to access the network,
virtual mobile nodes in the form of digital twins must be able
to “migrate” to the new edge virtualization field. Liang et al.
[32] proposed a multiuser task offloading scheme based on
edge-cloud joint computing, designed a greedy algorithm
based on submodule theory and fully utilized the computing
and communication resources of the cloud and edge. This
solution still has the participation of the cloud. Although the
transmission speed is slightly better than the traditional
migration method, the communication delay from the edge
to the cloud still exists. The solution proposed in this article
does not depend on the cloud center, and the main work is
carried out in the edge network. There is no remote communi-
cation delay, which can change the traditional migration
method and improve the transmission efficiency.

3. Scheme Design

As shown in Figure 1, when a user is roaming or has a
migration request, in order to obtain a lower perceived
delay, users tend to place their services on the most appro-
priate MEC server through 4G/5G/WiFi access networks.
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In order to ensure the continuity of services, it is necessary
to take the migration time into consideration and use the
predictive migration method [33, 34] to migrate virtual
machines. In this paper, we design the Mobile Device to Net-
work (MD2N) model based on the mobile device’s move-
ment and service conditions in real life. The specific model
is shown in Figure 1. Suppose there are N servers arranged
by index ℕ = f1, 2,⋯,Ng, each of which is directly associ-
ated with one or more base stations (BS), and all MEC
servers can communicate with each other through wired
channels. Any MEC server in the edge network environment
can provide multiple MD2N services for mobile devices. The
mobile device selects the best base station according to the
signal strength and communicates with the MEC server
associated with the base station. In addition, the MEC server
can be used as a router, so that mobile devices can commu-
nicate with the MEC server remotely. Under this premise,
multiple MEC servers can provide services for the same
mobile device.

Divide the actual physical time into continuous time
gaps, represented by t, t = 1, 2, 3,⋯, a time gap is assumed
to be τ seconds; the state of the mobile edge network is rep-
resented by an N ×N matrix, the (i-, j-) th element (G)i,j∈[0,
ηmax) (ηmax is the maximum channel capacity) in the matrix
indicates whether there is a direct connection between the i
-th and j-th MEC server, if ðGÞi, j = 0, means no connection.
Assuming that G is a constant matrix that does not change
with time, that is, within a specified time, the state of the
mobile edge network will not change, so a time parameter
α ðtÞ ∈ ½αmin, αmax� is defined to represent the channel
resources available in the network. αmin represents the min-
imum channel resources required to ensure communication.
In fact, for the service in the network, in order to ensure its

stable transmission in the case of channel congestion and
flow fluctuations, excessive channel resources should be pro-
vided. In addition, the more congested the channel, the
fewer available resources, so α can also indicate the number
of mobile devices in the channel. ηi,j (bits/s) represents the
available channel capacity between MEC server i and j,
which can be calculated using G according to the RIP (Rout-
ing Information Protocol).

We assume that according to the MEC server indexed by
M = f1,⋯⋯ ,Mg, connected mobile devices can use up to
M MD2N services; we can define a Q ×M matrix repre-
sented by π to record the mobile device’s future. The migra-
tion strategy in the next Q time slot, where Q is an integer
use ðπÞq,m ∈ f0,1,2,⋯⋯ ,Ngðq ∈ f1,⋯⋯ ,QgÞ to repre-
sent the target MEC server hosting service m in the time slot
tq = t0 + q − 1 (t0 represents the start time), correspondingly
in the matrix, if the MEC server will not host the service in
the future, it will be represented by ðπÞq,m = 0. Based on
the definition of the above matrix, we can use the vector π
ðtÞ to describe the service position in the time slot t ∈ ft0,
⋯⋯ , t0 +Q − 1g, therefore, we can use the time slot ft1,
t2,⋯⋯ , tqg in the vector πðt1, t2,⋯⋯ , tqÞ to rewrite the
migration strategy. Similarly, for any time slot t ∈ ft0 + 1,
⋯, t0 +Q − 1g, you can use πðt − 1, tÞ to rewrite the migra-
tion strategy.

Using a model similar to Markovian to derive the loca-
tion of MD, divide the network into regular hexagonal units
(as shown in Figure 2), where one hexagonal unit represents
the service range of an MEC server. Consider a random
walking movement model, in which MD visits any of the
six adjacent cells with probability p = 1/6. Figure 2 shows a
ring with a service area of k = 5. When the MD’s position
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Figure 1: System model of MD2N.
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is k hops away from the initial position, the service migra-
tion and relocation for the MD starts. Let XðtÞ denote the
distance from the MD to the initial server at time t (calcu-
lated in hop count). The system fXðtÞ, t ≥ 0g forms a CTMC

(Continuous-Time Markov Chain), the state space is fCðm
, nÞ ∣ 0 ≤m ≤ ðk − 1Þ, 1 ≤ n ≤ 6mg.

In Figure 2, it can be seen that the MD in the 1st ring
moves to any adjacent unit with probability p. The MD in
the second ring returns to the 1st ring with probability p,
remains in the second ring with probability 2p, and moves
to the third ring with probability 3p, increasing the distance,
so all the rings in the first ring can be aggregated into one
state. For the third ring, there are two types of rings: (1) sim-
ilar to ring 1, there are three 3-rings, two 2-rings, and one 1-
ring adjacent to it; (2) on the three rings, each has two rings
adjacent to it. Depending on where the MD is in the second
ring, there may be a 2p or 3p probability to move to the third
ring. Therefore, two aggregation states are obtained: C2f
C2,1, C2,3, C2,5, C2,7, C2,9, C2,11g and Cð1Þ 2fC2,2, C2,4, C2,6,
C2,8, C2,10, C2,12g. In the same way, any ring h has aggrega-
tion states Ch and CðzÞ h, where 1 ≤ z ≤ dðh − 1Þ/2e.

Figure 3 shows a Markov chain in each aggregation state
with k maximum of 5. According to the research of Langar
et al. [35], the ring number and superscript are used to indi-
cate the aggregation state of each ring h, and the equilibrium
state of its migration strategy is shown in formulas (1)–(9):
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Figure 2: Cellular network diagram.
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Among them, the values of b1 and b2 are
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Among them, πx represents the current position, for-
mula (1) represents the possible position and probability of
the next step when it is located in the corresponding position
in Figure 3, and formula (2) represents the corresponding

position in Figure 3. The possible position and probability
of the second step, (3) is the prediction of the possible posi-
tion and probability of the next h step according to its law.
equations (4)–(9) are the reasoning and simplification of (3).

Let E½Dist� denote the average distance from MD to the
MEC server. From (1)–(9), we can see that the size of E½
Dist� depends on the value of k, so the average distance from
MD to the initial position is
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4. Migration Decision

4.1. Transmission and Calculation Consumption. The widely
used three-parameter model is used to describe each MD2N
service m; input the data that needs to be processed with the
size of λm (bits), the calculation intensity γm (CPU cycles/
bit) represents the requirement of each service requiring
CPU resources to calculate one bit of input data, and the
maximum allowable delay Dm (seconds); in addition, define
f m,m ∈M to represent the frequency of message sending.

Data is transmitted from one MEC server to another
MEC server through a wired channel. Assuming that the
wireless transmission consumption between the mobile
device and the serving base station BS is a constant, the
transmission consumption of MD2N service m is

dtrans tð Þ =
λm

α tð ÞηL tð Þ,j
+Dadd: ð11Þ

Among them, Dadd is a constant, representing the con-
sumption of wireless transmission, ηLðtÞ,j represents the
channel capacity from LðtÞ to j = ðπÞt,m.

Each MEC server can provide computing services for
multiple tasks of connected mobile devices at the same time.
Use σm,n to describe the CPU frequency that MEC server n
can allocate to MD2N service m. Because MEC server has
powerful computing capabilities, σm,n will not change. If
the MEC server n is selected to provide service m, the
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Figure 3: Markov chain with k max 5.
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calculated delay is

dcom tð Þ = γmλm
σm,n

: ð12Þ

When the migration strategy vector is πðtÞ, we consider
the communication delay Um ðtÞ of the sum of data trans-
mission and processing in the specified time slot t

Um tð Þ = dtrans tð Þ + dcom tð Þ: ð13Þ

4.2. Migration Cost. Add a new parameter θm ∈ ½0, θmax� (in
bits) to indicate the size of the service sample data, where
θmax is the maximum possible size of the sample data, for
each MD2N service m ∈M, execute πðt − 1, tÞ in the time
slot t. The time delay of the migration strategy is

Wm t, π t − 1, tð Þð Þ = θm
α tð Þηs,e

: ð14Þ

Among them, ηs,e is the channel capacity from s =
ðπÞt−1,m to e = ðπÞt,m.

The goal of this paper is to minimize the average time
delay of service migration. Therefore, once the MD’s future
movement trajectory is obtained through probability calcu-
lation, a migration strategy is proposed to reduce the time
delay as much as possible based on the consideration of
communication and migration costs. For service m, the total
service delay in time slot t is

Dm tð Þ =Um tð Þ + Wm t, π t − 1, tð Þð Þ
τf m

: ð15Þ

The delay defined in equation (15) represents the
response time delay of a single message between the MEC
server and the MD. When the migration of the VM also
occurs in the time slot t, it is obvious that this will lead to
an increase in the response time. The response time is the
sum of communication costs and migration costs. If in the
time slot t, service m chooses not to migrate, the migration
cost at this time is zero, the response time represents the
communication time delay, and the formula (15) is
expressed as

Dm tð Þ =Um tð Þ: ð16Þ

Generally speaking, MD2N services can always be com-
pleted within 1 s [36], which is much smaller than the time
gap τ. The use of VM migration technology makes the
migration time of each service not lasting too long. In view
of this, the following assumptions can be made; even under
the minimum available channel resource αmin, the migration
of each MD2N service can be completed within a time gap,
namely

Wm t, π t − 1, tð Þð Þ ≤ τ,∀t,∀m,
Dm ≤ τ,∀m:

ð17Þ

For each service m ∈M, the importance of MD equip-
ment is different, so use ωm ∈ ½0, 1� to represent the weight
of each service. Although different MD2N services have
great differences in actual delay and end time, according to
the importance of the service, the time delay of equation
(15) is standardized using ωmðDmðtÞ/DmÞ. Therefore, the
standardized average time delay of multiple MD2N services
can be expressed as

D tð Þ = 1
M

〠
M

m=1
ωm

Dm tð Þ
Dm

: ð18Þ

MD2N associates a series of possible future state transi-
tion behaviors to As according to the user’s current state s.
For a given behavior a, when switching from one state s to
another state s′, an instantaneous reward rðs, s′, aÞ, the
reward is based on the size of migration overhead, rðs, s′, a
Þ = αðtÞ −DðtÞ. Therefore, the Markov Decision Process
(MDP) can be expressed as

S, As, s ∈ Sð Þ, q s′
��s, a� �

, r s, s′, a
� �� �

: ð19Þ

Among them, qðs′js, aÞ represents the conversion rate
when switching from state s to another state s′ under behav-
ior a. Define an attenuation factor γ ∈ ½0, 1�, then the migra-
tion strategy πðt1, t2,⋯⋯ , tqÞ can be expressed as

vπγ = limq⟶∞ Eπ
γ 〠

q

t=1
γt−1rt

( )
= Eπ

γ 〠
∞

t=1
γt−1rt

( )
: ð20Þ

According to the research of Taleb et al. [37], the solu-
tion of the optimal equation of (20) is equivalent to the opti-
mal decision π ∗ ðtÞ, which determines which MEC server
MD chooses in the future and whether to perform the
migration decision. The algorithm is described as follows

Algorithm 1 uses the dynamic programming algorithm
to obtain the optimal migration strategy matrix of MD
migration. The user performs migration according to the
matrix. UseM ∗ ðtÞ to represent the MD queue that is about
to face the migration decision, and define ρ to limit the
migration overhead to a time slot t. The algorithm of the
migration service is described as follows:

Algorithm 2 is a migration service algorithm based on
Algorithm 1. Considering the communication delay and
migration cost, we will serve it according to the migration
queue obtained by Algorithm 1 under the premise of mini-
mizing the delay and cost as much as possible.

5. Simulation Results and
Performance Analysis

5.1. Experimental Configuration. This section evaluates the
system utility of the proposed dynamic programming algo-
rithm based on Markov decision and greedy algorithm
under the edge-computing environment through simulation
experiments. In order to be consistent with the environment
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of the comparison experiment, this article uses KubeEdge on
the Dell PowerEdge R720 server to simulate an area with 26
edge servers and 1 cloud server. Each edge server is config-
ured with dual-core CPUs. Since all edge servers are cloned,
here, we assume that the computing power of all edge
servers is the same, and consistent with the comparison
experiment, it is 10GHz, and the computing tasks of edge
devices are randomly and evenly distributed between (500
and 1000) cycles/bit. The user’s mobility data is generated
by the currently widely used, the one simulator [38].

In the experiment, the migration time delay is counted,
and the time of the migration failure case cannot be counted.
Therefore, only the time consumption and time delay of the
successfully migrated VM are recorded in this experiment.
In terms of standardized average time delay DðtÞ and actual
average time delay, this experiment compares the PDOA
[39] and MDP schemes and compares them with the opti-
mal solution; in terms of actual running time and VM avail-
ability after migration, this experiment compares the PDOA,
MDP, and AUSP [38] schemes and compares them with the
completely offline scheme and the optimal solution.

5.2. Evaluation Index. This experiment mainly evaluates
from the aspects of standardized time delay, channel avail-
able resources, number of servers, and the availability of vir-
tual machines after migration.

5.2.1. Standardized Time Delay. Comparing the actual stan-
dardized average time delay and the average standardized
time delay of each program in different time slots, through

the fluctuation of each program, it can be judged whether
the program is stable.

5.2.2. Channel Available Resources. Set different channel
available resource rates, run each plan under different chan-
nel available resource rates, count the running time, and
compare the applicability of the plans.

5.2.3. Number of Servers. Change the number of servers from
small to large, count and compare the actual running time of
each program.

5.2.4. The Availability Rate of the Virtual Machine after
Migration. Count the ratio of the number of available virtual
machines to the total number of virtual machines after the
migration of each program is completed, so as to evaluate
the pros and cons of each program in practical applications.

Finally, comprehensively compare all the indicators and
draw a conclusion.

5.3. Experimental Results. Figure 4 compares the standard-
ized average time delay of each time slot t, namely formula
(18), the dotted line in the figure represents the calculated
value, which does not change with time, for comparison,
and the solid line represents the actual measured value. Here
we assume that m = 5 MD2N services are used, and the
available channel resource α = 0:5. When m = 5, the migra-
tion time of each scheme is close (Figure 5), which is conve-
nient for comparison. At the same time, starting from
α = 0:5, the average time extension tends to be horizontal
(Figure 6), and less resources are more representative. It
can be seen from the experimental results that the BMS
scheme and PDOA scheme proposed in this paper are close
to the optimal solution, and the mean value of the standard-
ized delay is much smaller than the MDP scheme. Although
the average value of the BMS scheme proposed in this paper
is slightly higher than that of the PDOA scheme, the differ-
ence is very small and can be ignored, and the fluctuation of
the BMS scheme is smaller and the most stable among the
four schemes.

Since the PDOA solution is mainly for devices in the
Internet of Vehicles, the application range is limited. In
order to highlight the practicability of this scheme, an exper-
iment was first compared with the PDOA scheme on a cer-
tain street, as shown in Figure 5. According to the change of
the average time delay under the conditions of different
channel available resource rates, it can be seen that as the
channel available resource rate α increases, the time delay

1: Initialize: t0=1, π
∗ for random.

2: do untilπ = π∗

3: Input: π(t0-1).
4: π⟵ π∗;
5: form∈ℳ do
6: vπγ = limq⟶∞Eπ

γf∑q
t=1γ

t−1rtg = Eπ
γf∑∞

t=1γ
t−1rtg

7: end for
8: loop

Algorithm 1: Dynamic programming to solve the optimal migration decision.

1: Input: π(t)
2: Initialize: M∗ðtÞ⟵∅, ρ=0.
3: form∈ℳ do
4: Update Um(t), Wm(t) by (13), (14)
5: end for
6: form∈ℳ do
7: ifρ+ Wm(t)≤τthen
8: ρ←ρ+ Wm(t),
9: Put m into M∗ðtÞ.
10: end if
11: end for
12: returnM∗ðtÞ

Algorithm 2: Best Migration Service (BMS).
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gradually decreases. When α increases to a certain degree
(0.65), the decreasing trend of the average time delay is no
longer obvious. The small graph in Figure 5 shows how the
average time delay changes when α is between 0.5 and 0.8.
It can be seen that the overall performance of the PDOA
solution is slightly better than this solution. This is because
the PDOA scheme adopts a predictive algorithm, and the
behavior of cars driving on the highway is regular, so the

time consumption in calculation is less than this scheme.
But when the user’s behavior is not regular, the prediction
algorithm of the PDOA scheme no longer has the advantage.
The specific results are reflected in the following experiment.

Figure 6 shows the effect of channel available resource α
on the long-term normalized average time delay. In the
experiment, α was increased from 0.1 to 0.8. It can be seen
from the experimental result graph that as α increases, the
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average time delay gradually decreases. This is because as the
channel’s available resources increase, the available
resources increase, the queues waiting for migration will
decrease, and the time required will decrease accordingly.
It can be seen that when the channel available resources
are less (from 0.1 to 0.4), the time delay of MDP is the lon-
gest, and the BMS and PDOA schemes are very close to the

optimal solution. This is because the MDP scheme treats all
MD2N services equally, while the BMS, PDOA, and optimal
solutions are dynamically migrating MD2N services. When
channel resources are sufficient (after 0.65), it can be seen
from the small graph in Figure 6 that the average time delay
of the BMS and PDOA solutions is slightly higher than that
of the MDP solution. This is because with the increase of
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channel resources, the BMS solution proposed in this paper
still maintains the previous migration strategy. Since the cal-
culation scale has not changed, it is difficult to improve the
time. Therefore, the average delay is slightly higher than

the MDP solution, but on the whole, this time difference is
very small, which can be tolerated in practical applications.
In addition, although the average time delay of the BMS
scheme is slightly higher than that of the PDOA scheme, it
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is on the same level as a whole. Moreover, as can be seen
from Figure 4, the stability of the BMS scheme is better than
that of the PDOA scheme.

Figure 7 records the running time of each scheme under
different numbers of servers in a certain time slot t. Figure 8
shows the running time chart of the number of servers in
Figure 5 between 12 and 26. As can be seen from the figure,
the time used by the BMS, AUSP, and PDOA solutions is
significantly shorter than the offline algorithm time, and
the three solutions consume basically the same time, espe-
cially with the increase in the number of servers, the time
consumed by offline algorithms has increased dramatically,
while the time consumed by other algorithms tends to stabi-
lize. Although the time-consuming of the MDP scheme has
been stabilizing, its average delay is longer and its stability
is poor. Although the running time of the BMS solution pro-
posed in this article is slightly higher than the other two, the
difference is not large and can be ignored. It can be seen
from Figure 4 that the BMS solution has the best stability.

Figure 9, respectively, counts the availability of VMs on
the target device under the conditions of channel available
resources of 0.2, 0.4, 0.6, and 0.8 after different migration
schemes are executed. The specific situation is shown in
Figure 9. It can be seen that the offline and MDP solutions
always maintain a high service availability rate, but the run-
ning time of the offline solution varies greatly. When the
number of servers is large, it takes a long time, which is
not conducive to practical applications. The average time
delay of the MDP scheme has large fluctuations and poor
stability. With the increase of channel available resources,
the service availability rates of BMS, AUSP, and PDOA tend
to increase, but from an overall point of view, the service
availability rate of the BMS solution proposed in this paper
is higher than the other two solutions.

6. Conclusion and Future Work

Aiming at the problem of virtual machine migration in
mobile devices in the edge environment, this paper proposes
a dynamic programming scheme BMS based on Markov
decision and greedy algorithm. Firstly, formulate the time
delay and other costs incurred in the VM migration process,
then use a method similar to cellular networks to model the
geographic location, and use Markov decision and greedy
algorithms to select the server to receive the VM to be
migrated. Unlike traditional prediction algorithms, this is a
probability-based choice, which improves accuracy to a cer-
tain extent and ensures the availability of the migrated VM
on the target device. The innovation of the scheme proposed
in this paper is mainly reflected in

(i) Abandon the traditional way of relying on cloud
servers to migrate VMs in mobile devices. Instead,
it relies on edge servers to migrate. The cloud data
center only functions to manage edge servers and
does not directly participate in the migration of
VMs. Edge servers are closer to users. With the pop-
ularization of 5G technology, transmission speeds

increase, response times are shorter, and time delays
are shortened accordingly

(ii) Compared with the traditional relying only on MDP
algorithm or prediction algorithm, this scheme
adopts a combination of MDP algorithm and greedy
algorithm. The impact of prediction accuracy on the
migration result is removed, and at the same time it
is ensured that the selected service is optimal or close
to the optimal solution

The experimental results show that the stability of the
BMS scheme is the best among the several schemes com-
pared, and the running time and time delay are also of the
best. Although using MEC servers close to users to serve
users can reduce the transmission time delay, the computing
power of MEC servers is not as good as that of cloud servers.
Therefore, it will take some time to make the optimal migra-
tion decision, so it is slightly higher than AUSP and PDOA,
but has high stability. And in terms of the availability of
VMs after migration, the BMS solution is significantly better
than the other two. To sum up, considering various factors,
the BMS solution is the best choice.

Using the edge server closer to the user as the migrating
dispatch center can reduce transmission delay, but due to
the limited computing power of the edge server itself, the
processing task speed is far lower than that of the cloud
server, which will cause a large time overhead. Although
the total execution time and time delay have been improved,
they have not improved much. These problems will be
solved through continuous improvement of the algorithm
in subsequent research. But overall, the solution proposed
in this paper has short running time, small average delay,
best stability, and the highest availability on the target
device, which is the best solution.
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