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To address the difficulty in calculating the nonlinear equation of time difference of arrival (TDOA) positioning, as well as the
problem of measurement error in the hybrid time difference of arrival/angle of arrival (TDOA/AOA) positioning algorithm, an
improved sparrow search algorithm is proposed to optimize positioning, and the optimization mechanism is retained on the
basis of improving the performance of the original algorithm. The maximum likelihood estimation method is used to calculate
the objective function, and then, the estimated function of the mobile station is used as the fitness function to generate the
initial population of sparrows. Then, using particle swarm optimization, optimize the sparrow search algorithm and obtain the
population’s optimal solution in order to obtain the optimal position. The simulation results show that, when compared to the
existing algorithm, increasing the number of base stations increases the average accuracy of the sparrow search algorithm
(SSA) positioning method by 18.54% and 4.5%, respectively, and, when compared to the proposed particle swarm optimization
(PSO) positioning method, by 13.79% and 11.6% as the radius increases. The SSA hybrid positioning algorithm performs
better in terms of positioning accuracy, convergence speed, and robustness.

1. Introduction

Positioning refers to determining the position of an object in
a coordinate system on the Earth’s surface. Through receiv-
ing radio waves between base stations and mobile stations,
detect the amplitude, signal incidence angle, transmission
time difference, etc. of radio wave signal. The predicted geo-
metric position of the mobile station is derived using the
positioning algorithm’s parameters [1]. A mobile station’s
location information is its coordinates on the plane, includ-
ing two-dimensional coordinates, three-dimensional coordi-
nates, longitude, latitude, longitude, and longitude, and
altitude information [2]. In the current research, positioning
technology can be divided into direction-based positioning
technology and distance-based positioning technology. The

existing technologies include TOA [3], TDOA [4], RSS [5],
OA [6], and their combined positioning methods [7].

Positioning is the key to many location-based wireless
sensor network (WSN) applications. [8, 9]. However, almost
every method of wireless location has its advantages and
limitations. Several researchers have offered superb position-
ing technologies to boost positioning accuracy [10, 11]. The
TOA-based positioning method requires the positioning
system to have precise time synchronization and is only suit-
able for the positioning of cooperative targets. TDOA’s
method requires at least 4 correctly positioned nodes for
three-dimensional target positioning [12, 13]. RSS-based
methods are easily affected by multipath signals, which
limits the application scenarios in the field of open terrain
sensors [14]. The AOA-based method highly relies on the
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distance range. When the target distance node is relatively
close, the positioning result is more accurate [15]. The
hybrid TDOA/AOA method has the advantage of reducing
the number of nodes and preventing the occurrence of the
so-called virtual targets [16]. This research proposes a
hybrid TDOA/AOA positioning strategy that is more accu-
rate than TDOA alone. This paper studies the application
of the hybrid system based on TDOA/AOA in 3D position-
ing and further improves it.

Since there is a nonlinear connection between the target
position and the observed value, andmaximum likelihood esti-
mation is asymptotically effective, it is used to estimate the
position. However, closed-form solutions are difficult to find
or closed-form solutions simply do not exist, which enables
the application of iterative numerical search techniques [17].

In 2002, a hybrid TDOA/AOA placement method was
presented. For reducing the deviations easily generated by
traditional positioning methods, many scholars have
improved the TDOA/AOA hybrid algorithm [18]. A hybrid
positioning strategy based on TDOA/AOA was suggested by
Jiang et al. to enhance the position performance utilizing just
two sites [19]. The sensor networks containing the position-
ing optimization models based on AOA and TDOA are
established, respectively. Aiming at multiobjective optimiza-
tion problem, a majorization-minimization (MM) method is
proposed. The hybrid localization problem is solved by the
projected gradient descent (PGD) method [20]. Although
domestic and foreign researchers have made certain progress
and achievements in the research of wireless positioning
algorithms, there are still shortcomings in their positioning
performance and application scenarios.

In terms of solving optimization problems of different
specialties, the combination of intelligent optimization algo-
rithm and this method has become very popular, for exam-
ple, the naked mole-rat (NMR) algorithm [21]. Therefore, in
addition to traditional analytical algorithms, swarm intelli-
gence optimization algorithms like PSO [22], genetic algo-
rithm [23], and salp swarm algorithm [24] have also been
applied to TDOA/AOA hybrid positioning. This type of
algorithm evaluates their pros and cons by establishing a
fitness function, then iteratively updates the position of
random points through optimized mechanism, and finally
converges to the best position. The swarm intelligence opti-
mization algorithm omits the complex solution process, and
there is no problem that the analytical algorithm is unsolv-
able [25]. According to the no free lunch theory, there are
few intelligent optimization algorithms suitable for all opti-
mization problems. For example, in the application process,
there may be problems of slow convergence in the later
stages and falling into local optimum [26].

In this study, the algorithms PSO, CPSO, SSA, and CSSA
were compared. Among them, PSO, which was put out in
1995, discovers the ideal answer through communication
and cooperation inside the group. The PSO method also
has drawbacks, including a tendency to fall into local
extreme points, a sluggish rate of convergence in the last
phases of evolution, and subpar accuracy [22]. As a result,
the concept of chaotic optimization is added to PSO, which
enhances convergence speed and accuracy and clearly

increases convergence over classical PSO [27]. SSA is one
of Xue and Shen’s most recent suggestions for swarm intel-
ligence optimization algorithms [28]. In view of the defects
of traditional SSA, CSSA uses chaos mapping methods to
initialize sparrow population. At the same time, Gaussian
variation and chaotic disturbance are introduced. When
the population appears to “aggregation” or “divergence,”
the individuals are adjusted to make them jump out of the
local optimal [29]. The SSA has the preponderances of
strong robustness, high precision, stability, and short
convergence time. However, the SSA algorithm tends to
converge toward the origin in the search. Therefore, when
the search result is near the origin, although the SSA algo-
rithm has excellent performance, for most scenarios, the
location of the optimal solution is not around the origin
[30]. Therefore, this paper proposes an improved SSA
combined with PSO, which enhances the search ability and
performs well in the global range. If it is used in the calcula-
tion stage of node position, it will get a better positioning
effect and meet the needs of positioning.

This research suggests a hybrid sparrow-based TDOA/
AOA positioning method to improve outcomes in order to
meet the strict standards for positioning accuracy in indus-
trial applications. SSA has good performance in high-
dimensional function optimization [31], feature selection
[32], and fault diagnosis [33]. This paper improves SSA algo-
rithm and applies it to the TDOA/AOA localization problem
for the first time and proposes a strategy for improving the
location of sparrow finder by particle swarm. The estimate
function of the mobile station was first obtained using the
maximum likelihood approach, and it was afterwards
employed as the fitness function to create the initial popula-
tion of sparrows. In order to get the best sparrow population
solution and the best location outcomes, the SSA is opti-
mized using the PSO mechanism. This increases the optimi-
zation accuracy and convergence speed of the method. The
simulation results demonstrate that the PSO-SSA method
outperforms previous algorithms in terms of positioning
accuracy, convergence speed, and resilience.

The remainder of this paper is structured as follows: the
associated work and the TDOA/AOA hybrid position algo-
rithm model are briefly covered in Section 2. SSA is intro-
duced in Section 3, followed by the suggested PSO-SSA in
Section 4 and the use of the PSO-SSA for TDOA/AOA in
Section 5, and Section 6 presents the computer simulation
and result analysis. Finally, Section 7 discusses the conclu-
sion and introduces the perspectives for future work.

2. TDOA/AOA Hybrid Position Algorithm

Combining the two algorithm models can significantly
improve positioning accuracy and lessen the effects of mea-
surement errors when compared to using either the TDOA
position algorithm or the AOA position algorithm sepa-
rately. Figure 1 depicts the three-dimensional Cartesian
coordinate system used to create TDOA/AOA hybrid posi-
tioning. MS stands for mobile station, and BS stands for base
station. The BS’s locations are ðxi, yi, ziÞ, and The MS’s
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locations are ðx, y, zÞ. If z is set to be 0, the BS and the MS
are in a two-dimensional plane.

In the case of two-dimensional planar placement, assum-
ing that M base receivers are randomly distributed on a two-
dimensional plane, the position of the i-th base station
receiver BS is ðxi, yi, ziÞ, and the position of the mobile sta-
tion MS is ðx, yÞ, the distance from the mobile station MS
to the base station i is ri, the actual distance difference
between MS and BS i (i ≠ 1) and BS 1 is denoted as r0i,1,
and the measured value is denoted as ri,1; then, the distance
equation is

ri,1 = cdi,1 = r0i,1 + cni,1 = ri − r1 + cni,1: ð1Þ

In (1), di,1, i = 2,⋯,M is the measured arrival time
difference, the speed of light is denoted by c, and ni,1, i = 2,
⋯,M is the noise introduced when measuring the TDOA.
When the SNR is high, the TDOA measurements are usually
Gaussian data and follow an approximately normal distribu-
tion, so the noise ni,1 also follows an approximately normal
distribution. It can be regarded as Gaussian white noise with
a variance σ2 of IID.

Also because

ri = cdi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xð Þ2 + yi − yð Þ2

q
, ð2Þ

so have

ri,1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xð Þ2 + yi − yð Þ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − xð Þ2 + y1 − yð Þ2

q
+ cni,1, i = 2,⋯,M:

ð3Þ

From the AOA measurement α, an equation can be
established:

α = arctan y − y1
x − x1

� �
+ nα: ð4Þ

In (4), nα is the AOA measurement error, which has
a normal distribution with a mean of 0 and a variation
of std2α.

Record as follows: Δ r! = ½r2,1, r2,1,⋯,rM,1�T ðM−1Þ×1, r! =
½r2, r3,⋯,rM�T ðM−1Þ×1, r!1 = ½r1, r1,⋯,r1�T ðM−1Þ×1, and n! =
½n2,1, n3,1,⋯,nM,1�T ðM−1Þ×1.

Then, there are

Δ r! = r! − r!1 + cn!: ð5Þ

In circumstances when there are redundant measure-
ment parameters, that is, where, and the number of effec-
tive measurement base stations exceeds 4, the maximum
likelihood technique (ML) is employed to calculate the
position ðx, yÞ of the mobile station MS. Δ r!i follows a
normal distribution with a mean of ri − r1 and a variation
of σ2; α follows a normal distribution with a mean of
arctan ððy − y1Þ/ðx − x1ÞÞ and a variance of std2α. If the
measured values are unaffected by one another, the maxi-
mum likelihood estimate is

x, yð Þ = arg min Δ r! − r! + r!1
� �T

Δ r! − r! + r!1
� ��

+ σ2

α2
α − arctan y − y1

x − x1

� �� �2�
:

ð6Þ

Equation (6) shows that in order to solve the coordi-
nate value, we must discover the nonlinear function’s
minimal value. In practice, however, it is extremely diffi-
cult to complete the minimum of the nonlinear function
of Equation (6) using the usual technique; hence, the
PSO-SSA is employed to find the ideal coordinate value.

3. SSA Algorithm

The SSA is inspired by the foraging and anti-predation
behavior of sparrows. The process of sparrow foraging is
an algorithm optimization process. The SSA is made up of
three different sorts of sparrows: finder, follower and scout.
Followers always follow and monitor the finder’s foraging
area or direction When the scouts found the predators, they
immediately sent out an alarm signal, and the entire sparrow
population evolved antipredation strategies [34].

If there are N sparrows in a D-dimensional search space,
the location of the i-th sparrow in the D-dimensional search
space is Xi = ½xi1,⋯xid ,⋯xiD�, i = 1, 2,⋯,N , and xid indi-
cates the position of the i-th sparrow in the d-th dimension.

The finders make up 10% to 20% of the population on
average, and the position update formula is

xt+1id =
xtid ⋅ exp

−i
αT

� �
R2 < ST ,

xtid +QL R2 ≥ ST :

8><
>: ð7Þ

Y

X

Z
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(x, y, z)MS

Figure 1: Model diagram of TDOA/AOA hybrid positioning
system.
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In (7) [25], the current iteration number is t. The maxi-
mum number of iterations is T . The α parameter is a uni-
form random integer between 0 and 1. Q is a chance
number with a conventional normal distribution. The
parameter L is a 1 × d matrix with all members being 1.
The warning and safety values are denoted by R2 ∈ ½0, 1�
and ST ∈ ½0:5, 1�, respectively.

With the exception of the finder, other sparrows are the fol-
lowers whose positions are updated according to formula (8):

xt+1ib =
Q ⋅ exp xwt

d − xtid
i2

� �
i > n

2 ,

xbt+1d + xtid − xbt+1d

�� ��A+ ⋅ L others:

8><
>: ð8Þ

There is a slight deviation in (8) in the original text, and it is
modified as follows [35]:

xt+1ib =
Q ⋅ exp xwt

d − xtid
i2

� �
i > n

2 ,

xbt+1d + 1
D
〠
D

d=1
rand −1, 1f g ⋅ xtid − xbt+1d

�� ��À Á
i ≤

n
2 :

8>>>><
>>>>:

ð9Þ

The parameter A is a matrix of dimension 1 ×D among
them. xwt

d is the worst position. xb
t+1
d is the best position.

The scout’s position has been modified as follows:

xt+1ib =
xbtd + β xtid‐xbtd

À Á
f i ≠ f g,

xtid + K
xtid − xwt

d

f i − f wj j + e

� �
f i = f g:

8><
>: ð10Þ

In (10), β is a random integer that follows the usual nor-
mal distribution. K is a random number between -1 and 1,
representing the control parameters of the sparrow’s travel-
ing direction and step size; f i is the adaptive value of the par-
ticular bird at this time. f g is the current worldwide ideal
fitness value; f w is the global worst fitness value. Epsilon is
a constant with an infinitesimal denominator [36].

4. Improved Sparrow Search Algorithm

4.1. PSO. PSO algorithm is proposed by Afzal and Ramis
and inspired by the graphical simulation of the beautiful
and unpredictable movement of birds [37]. In the PSO algo-
rithm, the maximum food source is defined as the final solu-
tion, and a single bird is regarded as an inanimate particle.
The search process is as follows: first, random particles
are in the space of the final solution, and a single particle
is searching for the final solution in the space every
moment. A particle swarm’s individual optimal value is also
its overall optimal value. Secondly, the direction and veloc-
ity of the particle are adjusted by the individual and global
optimal values of the particle itself. Finally, after several
iterations, most of the particles will converge around the
final solution [35].

Define the inertia factor as ω; the value is

ω = ωmax −
z ωmax − ωminð Þ

T
: ð11Þ

In (11), with the iterative evolution of particles, ω ∈
ðωmin, ωmaxÞ gradually becomes smaller. c1 and c2 are
learning factors, also known as acceleration constants,
the position update formula is illustrated where xt+1i is
the position of the i-th particle in the t-dimensional solu-
tion space, gbt is referred to as the global extreme value,
and pbti is the optimal value (12), and the velocity update
formula is shown in (10):

vt+1i = ωvti + c1r1 pbti − xti
À Á

+ c2r2 gbt − xti
À Á

, i = 1, 2,⋯, n vmin ≤ vt+1i ≤ vmax,
ð12Þ

xt+1i = xti + vt+1i ,
xmin ≤ xt+1i ≤ xmax:

ð13Þ

4.2. SSA Optimized by PSO. This paper offers a hybrid SSA
optimized by particle swarm since the population variety of
SSA decreases in successive iterations, making it easier to slip
into the local extreme value, and the optimization accuracy is
low. On the one hand, the upgraded technique can fully utilize
the benefits of the PSO algorithm in development as well as
the benefits of the SSA in exploration. On the other hand, in
consideration of the problems in the SSA, the PSO algorithm
has strong universality, simple principle, and few adjustable
parameters. The complementary advantages of PSO and SSA
algorithms make the proposed algorithm have better perfor-
mance. As a result, the primary goal of the fitness function is
to discover the optimum answer for the individual in a short
period of time while still retaining relevant information. In
SSA, discoverers have the greatest adaptability in food finding.
Followers observe and obey finders by increasing their preda-
tion value by providing the best food source.

In line with the finder position update, in the early stages
of the process, the value will tend to converge to 0 and
approach the global optimal solution. This may easily lead
to premature convergence. As a result, this study innovates
the position update strategy of the PSO algorithm’s global
search phase in order to enhance the finder’s position update
formula in SSA. The following is the position update formula:

xt+1id =
xtid ⋅ ωvti + c1r1 pbti − xti

À Á
+ c2r2 gbt − xti

À ÁÂ Ã
R2 < ST ,

xtid +QL R2 ≥ ST :

(

ð14Þ

By introducing the PSO into the SSA, the improved PSO-
SSA algorithm utilizes the large-scale fast search ability of
particle swarms, which improves the convergence speed of
sparrows. The corresponding relationship between improved
sparrow search algorithm and moving position estimation is
shown in Table 1.
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4.3. Time Complexity Analysis. The computing effort
required to run an algorithm is referred to as its time com-
plexity. Suppose N is the overall scale, D is the dimension,
T is the maximum number of iterations, and f ðDÞ is the
time necessary to solve the objective function.

It can be seen from the literature [38, 39] that the SSA
algorithm’s time complexity is

T =O D + f Dð Þð Þ: ð15Þ

Initialization takes the following time:

T1 =O N ⋅ D + f Dð Þð Þð Þ: ð16Þ

The proportion of finders in the SSA is set as r1, the pro-
portion of scouts is set as r2, and the calculated individual
fitness is OðNÞ. The number of finders is N × r1. The particle
swarm optimization strategy only changes the update
method of the finder and does not increase the process.
Therefore, the time complexity required for the finder posi-
tion update is

T2 =O D ×N × r1ð Þ: ð17Þ

The number of followers in the SSA is N × ð1 − r1Þ.
Therefore, the temporal complexity of the location update
of the follower is

T3 =O D ×N × 1 − r1ð Þð Þ: ð18Þ

The number of scouts in the sparrow search algorithm is
N × r2. Therefore, the scout’s position update has the follow-
ing temporal complexity:

T4 =O D ×N × r2ð Þ: ð19Þ

Thus, the PSO-overall SSA’s time complexity is

T ′ = T1 + itermax T2 + T3 + T4ð Þ =O D + f Dð Þð Þ: ð20Þ

And T ′ = T . To sum up, compared with the SSA, the
PSO-SSA will not increase its time complexity.

5. Application of Improved SSA for TDOA/AOA

5.1. Fitness Function. The fitness function used has a direct
impact on the modified sparrow algorithm’s convergence

speed and ability to locate the best solution. The fitness func-
tion and parameters of this paper are referred to [22]. Take
the fitness function as

Fitness Yð Þ = Δr − r + r1ð ÞT Δr − r + r1ð Þ + σ2

α2
α − arctan y − y1

x − x1

� �� �2
" #

:

ð21Þ

Among them, the coordinates ðx, yÞ corresponding to
the best fitness value are the coordinates of the optimal posi-
tion estimation.

5.2. Improve the Implementation Process of SSA. The PSO-
SSA implementation phases are as follows:

(1) Initialization: initialization parameters include the
population number N , T which is the maximum
number of iterations, ratio of finders and scouts,
alert thresholds and safety thresholds, acceleration
factors c1 and c2, maximum inertia factor ωmax,
and minimal inertia factor ωmin; calculate the
moment of inertia ω according to formula (10)

(2) Place the population in its initial state

(3) Calculate the fitness value of sparrows and rank
them

(4) Select a part of the sparrow species with a better
position as the finder and update the position of
the finder in accordance with formula (14)

(5) The remaining sparrows serve as followers. Scouts
are chosen at random from the entire population.
And according to the update formula of the
followers and the scouts, update its position

(6) Determine the global optimal sparrow by computing
the fitness values following an update

(7) Judge whether the end condition of the iteration loop
is reached, go to the next step, or jump to step 3

(8) The algorithm execution ends

Figure 2 depicts the flow chart for the PSO-SSA position
approach.

Table 1: Correspondence between improved sparrow search algorithm and mobile position estimation.

PSO-SSA Mobile position estimation

Population N Number of mobile base stations

Improve sparrow individuals A candidate solution for unknown node location

Fitness function Objective function for solving unknown node position coordinates

Global optimal solution Minimum node of positioning accuracy error

Location of global optimal solution Estimated position coordinates of unknown nodes

Time required to improve sparrow activities Algorithm simulation time
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6. Computer Simulation and Result Analysis

6.1. Function Optimization. For the sake of verifying the
superiority of the PSO-SSA in solving the optimization func-
tion, seven standard benchmark functions are used for
simulation. Table 2 is the test function for dimension 30.
To be more convincing, run the improved sparrow search
algorithm independently 200 times. The test function results
are compared to the SSA, CSSA, PSO, and CPSO. Each algo-
rithm’s common parameters were set to 50 as the maximum
number of iterations and 50 as the population size. Table 3
shows the particular parameters for algorithm selection.

For the sake of testing the stability and convergence of
the five algorithms, the function optimization analysis of
each algorithm is shown in Figure 3. From the overall con-
vergence curve, as can be seen that the SSA and the
improved SSA have the best convergence accuracy, the
CPSO algorithm is the second, while the PSO algorithm is
the least expensive, indicating that the SSA and its enhanced
algorithm have increased convergence speed and accuracy.
Moreover, the SSA and its improved SSA converge first,
and the optimization accuracy reaches the optimal value.

The SSA, CPSO, and PSO-SSA iterate around 5 times to
obtain the global optimal solution while solving F1, F2, F3,

Generate initial population

Calculate the fitness value of
each sparrow, find the

current optimal value and
worst value, and the

corresponding position

End

Whether the maximum
number of iterations has

been reached

Establish an optimization
model for the positioning

problem

The positioning problem is
transformed into an

optimization problem

output positioning result

Determine fitness function
according to TDOA/AOA

Calculate the fitness of the
entire sparrow population

after updating, and find the
global optimal sparrow

NO

Yes

Start

Select some sparrows with
better fitness value as finders,

and update the position
according to formula (6)

Update joiner location Update scout location

Yes

Figure 2: The PSO-SSA positioning flow chart.
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F4, and F5, and the solution accuracy on other functions is
also greater than other methods. When attempting to solve
F6, it is evident that the convergence speed of the PSO-
SSA and the CSSA is faster, followed by the SSA, and finally
the CPSO algorithm and PSO algorithm. The PSO-SSA out-
performs the CSSA while iterating 5-10 times; when iterat-
ing 15-35 times, the CSSA outperforms the PSO-SSA; but
after 35 iterations, the PSO-SSA outperforms the CSSA
and the first close to the most optimal solution. It demon-
strates that the search performance at the start of iteration,
as well as the development performance at the conclusion
of iteration, is superior to the other four algorithms. For
solving F7, the PSO-SSA outperforms the CSSA, but the
SSA outperforms the PSO-SSA by a little margin. To sum
up, the PSO-SSA can fully guarantee the search ability while

ensuring the development ability, without losing the popula-
tion diversity and optimization stability.

6.2. Positioning Simulation Experiment

6.2.1. Experimental Scenarios and Evaluation Indicators. In
this experiment, in the environment of MATLAB2018b,
NVIDIA GeForce GTX 1660, and Windows 10, 64-bit, the
suggested TDOA/AOA hybrid positioning method based
on hybrid sparrow search is subjected to a positioning per-
formance simulation test. And this experiment selects the
classic positioning algorithms.

The simulation scenarios and main parameters in this
paper are set as follows: considering that the cellular network
uses 9 receivers, the structure shown in Figure 4, the serving
base station is bs1. The service BS’s AOA measurement error
has a Gaussian normal distribution with a mean of zero. In
the experiment, the population sizes of PSO, CPSO, SSA,
CSSA, and PSO-SSA were all 60. The maximum number of
iterations is set at 20 as the termination condition for the
six algorithms. The comparison of the RMSE indicators of
six algorithms is shown in the figure below. The positioning
accuracy evaluation index chosen was the RMSE:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
P
〠
P

p=1
xp − x̂pÞ2 + ypŷpÞ2

��vuut ð22Þ

P is the total number of test points, and among them,
ðxp, ypÞ and ðx̂p, ŷpÞ represent the p-th test point’s actual
position and estimated position, respectively.

The environment-related parameters in wireless posi-
tioning are shown in Table 4.

6.2.2. The Number of Base Stations, Cell Radius, and
Measurement Error Are Used as Variables to Compare the
Positioning Performance of the Algorithm. The initial posi-
tion of the mobile station is assumed to be (0.8, 0.2).

(1) The standard error of positioning is proportional to
the number of base stations. In the simulation

Table 2: Test functions.

Function Equation Dimension Bounds Optimum

F1 max xij j, 1 ≤ i ≤ df g 30 [-100, 100] 0

F2 〠d

i=1 xi sin xið Þ + 0:1xij j 30 [-10, 100] 0

F3 10d +〠d

i=1 x2i − 10 cos 2πxið ÞÂ Ã
30 [-100, 100] 0

F4 −20 exp −0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/d〠d

i=1x
2

r !
− exp 1/d〠d

i=1cos 2πxið Þ
� �

+ 20 + exp 1ð Þ 30 [-5.12, 5.12] 0

F5 1/500 +〠25
j=1 1/j +〠2

i=1 xi − aij
À Á6� �� �−1

30 [-65, 65] 0

F6 −〠7
i=1 X − aið Þ X − aið ÞT + ci
h i−1

30 [0, 10] -10.4028

F7 −〠10
i=1 X − aið Þ X − aið ÞT + ci
h i−1

30 [0, 10] -10.5363

Table 3: Initial settings of algorithm control parameters.

Algorithm Parameter Values

PSO
C1, C2 2

w1, w2 0.9, 0.4

CPSO
C1, C2 2

w1, w2 0.9, 0.4

SSA

PD 20%

SD 10%

ST 0.8

CSSA

PD 20%

SD 10%

ST 0.8

PSO-SSA

PD 20%

SD 10%

ST 0.8

C1, C2 2

w1, w2 0.9, 0.4

Vmax 6
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Figure 3: Continued.
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experiment, the count of base stations is raised from
four to nine, the increment interval is set to one, the
error is set to thirty meters, the radius is set to three
thousand meters, and the root mean square error of
each method is compared. The abscissa in Figure 5
represents the number of base stations, while the

ordinate represents the root mean square error (m).
There are now more base stations than ever before,
the positioning accuracy of each algorithm is contin-
uously improved, and thus, the standard error is
decreased. Compared with the proposed PSO posi-
tioning method, the average accuracy of SSA posi-
tioning method has increased by 18.54% and 4.5%,
respectively. Overall, the PSO-SSA has a lower curve
than all other algorithms, and it performs the best in
terms of positioning, followed by the CSSA and the
SSA. When there are four to five base stations, the
difference between the positioning performance of
the SSA and the CSSA is not large. When the base
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Figure 3: Comparison of function iteration calculation results of the five algorithms.

bs2
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bs7

bs6 bs4

bs3

y

x

bs8

bs9

Figure 4: Schematic diagram of the position of the base station and
the mobile station.

Table 4: Simulation environment parameters.

Name Values

Number of base stations 4~9
Cell radius 3000m

Number of initial particles 60

Number of iterations 20

PSO: c1, c2 2.4, 2.4

PSO: ωmax, ωmin 0.9, 0.2

SSA: ST 0.6

SSA: PD 0.7

SSA: SD 0.2
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stations is between 5 and 9, from the overall average
point of view, compared with the existing traditional
positioning algorithms, unlike the CSSA and the
SSA, the PSO-SSA performs positioning better, and
the SSA is not much different from the chaotic spar-
row algorithm. This fully shows that the PSO-SSA
has obvious superiorities in the accuracy of position.
However, from the aspect of algorithm stability, the
fluctuation of the SSA curve in the figure is relatively
large, indicating that the stability is slightly poor

(2) The positioning standard error is related to the cell
radius. In the simulation experiment, the cell radius
is increased from 500m to 3000m, the increment
interval is 500m, 4 base stations are selected, and
the measurement error is 30m, and the RMSE of
each algorithm is compared. The abscissa represents
the radius (m), and the ordinate is the RMSE (m), as
illustrated in Figure 6. The overall graph shows a
lower trend when the cell radius is increased contin-
uously, as does the standard error, and the place-
ment accuracy of each method improves. As the
radius increases, compared with the proposed PSO
positioning method, it has increased by 13.79% and
11.6%, respectively. The PSO-SSA algorithm pro-
vides more precise placement. As shown in
Figure 6, the PSO-SSA and CSSA clearly outperform
the classic positioning algorithms and the SSA in
terms of positioning performance. When the radius
is between 500 and 1000m, the sparrow algorithm
decreases greatly, while other algorithms change less,
indicating that they have good stability. When the
radius is 1000~3000m, the localization performance

and reliability of the hybrid SSA and the CSSA are
obviously superior to other positioning algorithms.
This is because the hybrid SSA and the chaotic SSA
optimize the functional formula of TDOA/AOA,
which eliminates a certain error; to some extent,
the error caused by radius change is reduced and
the positioning accuracy is improved

(3) Positioning performance is affected by measurement
errors. The cell radius is set to 3000m in the simula-
tion experiment and the base station to 7, the mea-
surement error variance is 30m to 240m, and the
measurement error is x = σAOA×c, where c is the
speed of light. Figure 7 displays a comparison of each
algorithm’s root mean square error. The ordinate
denotes root mean square error (RMSE), whereas
the abscissa denotes measurement error (m). The
standard error of the other algorithms also rises as
the measurement error does. However, the SSA and
the PSO-SSA are more stable than other algorithms
and are basically not affected by errors. This is
because the chaotic process can, to some extent,
mitigate the influence of mistakes on positioning
precision. And the existing traditional positioning
algorithms are greatly affected by errors. Therefore,
the bigger the measurement error, the greater the
risk of measurement result variation, and the algo-
rithm becomes more unstable

Figure 8 depicts the link between the standard error and
measurement error when all other variables are the same for
four base stations: the standard errors of the Taylor method,
Chan algorithm, and TDOA/AOA algorithm have all grown
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Figure 5: Relationship between standard error and base station.
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Figure 6: The standard error and cell radius relationship.
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since Figure 7. It demonstrates that base stations have a sig-
nificant impact on RMSE, and the fall of base stations will
make the measurement of TDOA/AOA erroneous, resulting
in an increase in mistakes.

Similarly, when other conditions are the same, when 7
base stations are selected and the reference coordinates are
selected (0.8, 0.6), the relationship between the RMSE and
the measurement error can be seen from Figure 9: the refer-
ence coordinates are closely related to the positioning accu-
racy of the SSA. When it is close to the base station’s center,

the algorithm performs better and achieves improved posi-
tioning accuracy. As a result, the choice of reference coordi-
nates throughout the measurement procedure can help the
positioning algorithm perform better.

(4) Following that, examine the link between measure-
ment error, cell radius, number of base stations,
and MSE. Let the abscissa represent the measure-
ment error, the number of base stations, and the cell
radius, and the ordinate represent y = 10 lg (MSE).
The MSE is determined using formula (23), where
200 is the number of experiments:

MSE = ∑200
L=1 ~x lð Þ − xk k22

200 ð23Þ

As shown in Equation (21), ~xðlÞ is the l-th estimated
position value of x. The comparison of verification result is
shown in Figures 10–12.

As shown in Figure 10, when measurement error
increases, the MSE also increases, and the PSO-SSA shows
better positioning performance in the MSE. This is because
the PSO-SSA reduces the effect of measurement errors on
the positioning, making the positioning more accurate.

As shown in Figure 11, when base station number is
between 4 and 5, the SSA is comparable to the CSSA, and
then, the CSSA has higher positioning accuracy. Once the
number of base stations approaches 5, the change tends to
remain steady. That is, the PSO-SSA outperforms the CSSA,
SSA, and other algorithms in terms of placement accuracy.
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Figure 7: The connection between standard error and
measurement error.

0.1 0.2 0.3 0.4 0.5 0.6
Measurement error (°)

0

50

100

150

200

250

300

RM
SE

 (m
)

Taylor
Chan
TDOA/AOA
PSO

CPSO
SSA
CSSA
PSOSSA

Figure 8: The connection between the measurement error and the
four standard errors recorded by the base station.
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The localization performance of the hybrid sparrow
algorithm proposed in this paper is better than the other
three algorithms, as shown in Figure 12, but it makes full
use of particle swarm position update to avoid linearization
of nonlinearity, which causes the algorithm to fall into the
problem of local optimal solution. Because the TDOA/
AOA hybrid positioning performance has improved, the
PSO-SSA is now employed for TDOA/AOA hybrid posi-
tioning, which may effectively increase positioning accuracy.

6.2.3. 3D Positioning Error Results of the Eight Algorithms.
From the standpoint of three-dimensional positioning, this
study compares the positioning performances of the conven-
tional positioning algorithms, PSO algorithm, CPSO algo-
rithm, SSA, and our PSO-SSA. Figures 13(a)–13(h) illustrate
the results of the 3D position algorithm, accordingly.

By comparing the 3D positioning errors of the 8 algo-
rithms, the RMSE of the traditional positioning algorithms,
PSO algorithm, CPSO algorithm, and SSA will increase
when measurement error and radius increase. The maxi-
mum positioning error of the Taylor method is 120 meters,
the Chan algorithm is 126 meters, and the TDOA/AOA
hybrid algorithm is 113.5 meters, among others. The swarm
intelligence optimization algorithm PSO algorithm has a
positioning error of 100m, whereas the CPSO method has
a positioning error of 85.43m. The positioning error of the
SSA reaches 24.8m, and the positioning error of the CSSA
reaches 19.3m. It can demonstrate that the swarm intelli-
gence optimization algorithm has a lower error than the tra-
ditional three positioning algorithms and that the SSA and
CSSA have a better positioning impact than the PSO algo-
rithm and CSSA. The positioning error of the PSO-SSA pre-
sented in this study is 11.7m, which is substantially lower
than the positioning errors of previous techniques. As can
be shown, the PSO-SSA suggested in this study provides the
best positioning impact and the minimum positioning error.

6.2.4. Algorithm Time-Consuming Comparison. We com-
pared the simulation times of the five algorithms, as shown
in Figure 14. It is easy to see that the conventional position-
ing algorithms consume the least amount of time. From the
simulation comparison of the 5 algorithms in Figure 14, it is
shown that, first of all, the simulation time-consuming of the
PSO positioning algorithm, the SSA, and the CSSA is less.
The CPSO algorithm, the CSSA, and the proposed PSO-
SSA are time-consuming. Secondly, CPSO algorithm

0.1 0.2 0.3 0.4 0.5 0.6
Measurement error (°)

5

10

15

20

25

30

35

40

45

50

10
lo

g 
(M

SE
) (

m
)

Taylor
Chan
TDOA/AOA
PSO

CPSO
SSA
CSSA
PSOSSA

Figure 10: The connection between measurement error and MSE.
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consumes more time than the PSO algorithm, because add-
ing chaos mechanism in initialization phase requires optimi-
zation first. The PSO-SSA proposed in this paper takes the
longest time.

7. Conclusion

In this study, the PSO-SSA is presented to solve the nonlin-
ear issue of TDOA/AOA hybrid placement, which is
strongly impacted by inaccuracy. Moreover, the starting
population and fitness function are optimized to locate the
coordinate point with the best fitness. The simulation results

reveal that, when compared to the classic positioning
method, the PSO-SSA has greater positioning accuracy, con-
vergence speed, resilience, and so on under diverse cell
radius and measurement error circumstances, which has
research relevance in practical application.

In the research of this paper, some improved schemes
and algorithm are proposed for the target positioning algo-
rithm, and corresponding conclusions are drawn. However,
these conclusions are only preliminary and theoretical, and
the simulation experiments are only simulations under rela-
tively ideal conditions. From the perspective of practical
application, further research is needed, such as how to better

0 0
1000

CSSA

R (m)

RM
SE

 (m
)

2000
3000

0.6
0.4

0.2Measurement error

17

20

18

19

(g)

0 0
1000

PSOSSA

R (m)

RM
SE

 (m
)

2000
3000

0.6
0.4

0.2Measurement error

4

12

10

6

8

(h)

Figure 13: Comparison of three-dimensional errors of the eight algorithms.
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solve the interference of multipath transmission and how to
establish a more accurate wireless channel transmission
model and find more accurate and anti-interference ability
of TDOA and AOA parameter estimation methods. In
future research, the following aspects can be considered
and studied: further study the principle of SSA, improve
the algorithm and apply it to TDOA/AOA hybrid position-
ing, and further enhance the positioning performance and
accuracy. Secondly, this paper only studies the wireless loca-
tion algorithm relatively independently, ignoring the influ-
ence of other factors, for example, the implementation of
the positioning function in the network and the possible
impact of various functions of various networks on the posi-
tioning. The next step must be to establish a system simula-
tion platform, embed the real positioning function module,
and test it in the real network environment. Lastly, we may
use the technique provided in this work to address various
position issues.
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