
Research Article
An Enhanced Deep Reinforcement Learning-Based Global
Router for VLSI Design

Saijuan Xu ,1 Liliang Yang ,2,3 and Genggeng Liu 2,3

1Department of Information Engineering, Fujian Business University, Fuzhou, China
2College of Computer and Data Science, Fuzhou University, Fuzhou, China
3Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou, China

Correspondence should be addressed to Genggeng Liu; liu_genggeng@126.com

Received 11 November 2022; Revised 23 February 2023; Accepted 25 April 2023; Published 5 May 2023

Academic Editor: Kaize Shi

Copyright © 2023 Saijuan Xu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Global routing is a crucial step in the design of Very Large-Scale Integration (VLSI) circuits. However, most of the existing methods
are heuristic algorithms, which cannot conjointly optimize the subproblems of global routing, resulting in congestion and overflow.
In response to this challenge, an enhanced Deep Reinforcement Learning- (DRL-) based global router has been proposed, which
comprises the following effective strategies. First, to avoid the overestimation problem generated by Q-learning, the proposed
global router adopts the Double Deep Q-Network (DDQN) model. The DDQN-based global router has better performance in
wire length optimization and convergence. Second, to avoid the agent from learning redundant information, an action
elimination method is added to the action selection part, which significantly enhances the convergence performance of the
training process. Third, to avoid the unfair allocation problem of routing resources in serial training, concurrent training is
proposed to enhance the routability. Fourth, to reduce wire length and disperse routing resources, a new reward function is
proposed to guide the agent to learn better routing solutions regarding wire length and congestion standard deviation.
Experimental results demonstrate that the proposed algorithm outperforms others in several important performance metrics,
including wire length, convergence performance, routability, and congestion standard deviation. In conclusion, the proposed
enhanced DRL-based global router is a promising approach for solving the global routing problem in VLSI design, which can
achieve superior performance compared to the heuristic method and DRL-based global router.

1. Introduction

In Very Large-Scale Integration (VLSI), millions of pins are
integrated into a chip. A set of pins with the same potential
forms a net that must be connected by wires [1]. With the
advancement of the VLSI manufacturing process, the den-
sity of nets on a chip and the required wire length are
increasing. Two-pin net routing is the simplest global rout-
ing problem, but it still belongs to the NP-hard problem
[2], and the optimal solution cannot be computed in polyno-
mial time. Therefore, one of the challenges in the physical
design phase is to get a feasible routing solution in a reason-
able time while minimizing the wire length.

The VLSI routing phase is divided into global routing [3]
and detailed routing [4]. The routing area of global routing
is divided into uniformly sized grids, and the connections

between pins are abstracted as intergrid connections [5].
This phase requires a reasonable allocation of wires to the
grids and guides detailed routing. The metrics used to eval-
uate the quality of global routing include overflow, wire
length, and congestion [6, 7]. The overflow determines the
yield of the chip. Therefore, this paper takes the overflow
as the main design goal and optimizes the wire length and
congestion based on the overflow as 0.

Reinforcement learning (RL) is different from supervised
and unsupervised learning [8] which belongs to the third
type of machine learning. In RL, an agent interacts with its
environment by trial. A reward is returned to the agent by
its environment when the agent takes action [9]. The goal
of RL is to maximize the cumulative rewards obtained by
the agent. However, RL often faces the problem of the exces-
sive number of states when dealing with high-dimensional

Hindawi
Wireless Communications and Mobile Computing
Volume 2023, Article ID 6593938, 16 pages
https://doi.org/10.1155/2023/6593938

https://orcid.org/0000-0002-1159-9253
https://orcid.org/0009-0001-2684-5402
https://orcid.org/0000-0002-3099-4371
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6593938


spaces. With the development of deep learning, the Deep
Reinforcement Learning (DRL) algorithm is developed by
combining artificial neural networks with RL [10], which
makes it possible for RL to solve the policy decision in a
high-dimensional space [11].

Global routing problems can be divided into several two-
pin path planning subproblems [12]. Path planning is a
sequential decision process with Markov property [13]. RL
can solve this type of problem well. In path planning, an
agent performs discrete actions for random decision-
making and receives rewards in a finite number of states.
The future state of the agent only depends on the current
state, and all states in the environment are observable, which
is called the Markov Decision Process (MDP).

This paper is aimed at improving the design of a global
router by utilizing the conjoint optimization ability of
DRL, which outperforms heuristic methods in terms of over-
flow and wire length [14]. In addition, this research seeks to
surpass existing DRL-based global routers in terms of wire
length, routability, and convergence performance. To
achieve this goal, an enhanced DRL-based global router is
designed, and four effective optimization strategies are pro-
posed. The main contributions of this paper are as follows:

(i) First, to avoid the overestimation problem gener-
ated by Q-learning, a global router based on Double
Deep Q-Network (DDQN) [15] is proposed. Exper-
imental results demonstrate that the DDQN-based
global router outperforms the Deep Q-Network
(DQN) based on wire length and convergence
performance

(ii) Second, to reduce the redundant information and
enhance the convergence performance of the model,
we propose an action reduction method, which is
proved to have an enhancement on the convergence
performance of the model through experimental
results

(iii) Third, since the earlier nets occupy the routing
resources of the later nets, resulting in unfair
resource allocation, we propose a concurrent train-
ing method to solve the unfair resource allocation
problem as much as possible

(iv) Fourth, a new reward function is designed to
encourage wire sharing and decentralize routing
resources reasonably. The new reward function has
good optimization results in wire length and con-
gestion performance compared with the reward
function in [16]. In summary, the experimental
results show that this algorithm achieves better
results in several important metrics

2. Related Work

Overflow and wire length are the two main optimization
goals of the global routing problem, as well as the main opti-
mization goal of the 2007 and 2008 ISPD competitions.

The method to solve global routing is divided into serial
routing and parallel routing [17]. Serial routing usually sorts
nets in a specific order and routes them one by one; this
method is fast. However, there is an unfair phenomenon:
the routing difficulty of the earlier nets has sufficient routing
resources (meaning that the capacity of each edge in the
routing area is large), while most of the later nets have tight
routing resources, so the serial routing method usually rips
up part of the nets and reroutes them. The existing methods
based on serial routing are as follows: [18] proposed a
dynamic routing mode, and this mode is driven by a
movable wires method, which quickly and accurately pro-
vides a routing solution driven by routability. [19] proposed
enhanced variants of extreme edge shift and edge contrac-
tion to achieve rapid exploration of candidate paths. [20]
proposed a circular fixed-order monotonic routing and a
high-performance congestion-driven 2D global router.

The parallel method routes multiple nets at the same
time [21], solving the unfairness of routing resources in a
serial method, but it is often very time-consuming and even
impossible to solve, mainly based on the commodity flow
model [22] and integer linear programming model [23].

Heuristic methods are effective in global routing. [24]
presented a rectilinear SMT (RSMT) algorithm based on dis-
crete particle swarm optimization (DPSO) to optimize wire
length efficiently. [25] used the DPSO algorithm and the
firefly algorithm to construct the global routing solutions.
[26] presented a DPSO-based multilayer obstacle avoidance
X-architecture SMT (XSMT), which uses an effective penalty
mechanism to help particles avoid obstacles. [27] introduced
five commonly used swarm intelligence technologies and
related models and used them in three classic routing prob-
lems: SMT, global routing, and detail routing. [28] proposed
a new type of DPSO and multistage transformation to be
used to construct RSMT and XSMT. The simulation results
of industrial circuits show that this method can obtain
high-quality routing solutions. [29] presented an XSMT
construction method based on multistrategy optimization
Discrete Differential Evolution (DDE), which significantly
reduces XSMT wire length. [30] proposed an XSMT algo-
rithm based on social learning DPSO and an effective two-
stage construction method to achieve the best wire length
optimization effect. [31] presented an efficient VLSI routing
algorithm employing novel DPSO and multistage transfor-
mation to build XSMT. [32] presented a unified algorithm
for XSMT and RSMT construction based on a hybrid trans-
formation strategy (HTS) and self-adapting DPSO. [33]
presented an effective DPSO-based power-driven length-
restricted X-routing algorithm. The algorithm can achieve
the best wire length cost at a very fast speed under the con-
straint of restricted wire length.

DRL-based global routing is different from heuristic-
based global routing. Compared with heuristic methods,
DRL has more flexibility and conjoint optimization capabil-
ities. [16] proposed the DRL-based global routing algorithm
for the first time. The results of [16] show that its overall
performance is better than the sequential A∗ algorithm. To
this end, this paper proposes four effective optimization
strategies for the DRL algorithm model, to further enhance

2 Wireless Communications and Mobile Computing



the performance of the DRL-based global router. We com-
pare the enhanced DRL-based global router with [16] and
the sequential A∗ in Section 5.

3. Preliminaries

3.1. Global Routing. In VLSI global routing, the routing area
is a multilayer structure. Each layer is divided into several
rectangles of the same size, and each rectangle is called a
G-cell. Figure 1(a) shows a two-layer global routing struc-
ture, where the white rectangular areas are G-cells, the blue
rectangles are pins, there are several pins in a single G-cell,
and the yellow rectangles are the routing channel. The num-
ber of routing channels determines the maximum number of
wires that can be accommodated. Usually, only the wires
between G-cells are considered in global routing, and the
wires inside the G-cell are ignored, so the model in
Figure 1(a) can be further simplified. Figure 1(b) shows the
simplified structure. Each G-cell is abstracted as a dot, and
the routing channels between two G-cells are abstracted as
a black line, called an edge. Due to the limitations of the
manufacturing process, a single-layer routing area can only
have unidirectional edges. In Figure 1(b), there are only hor-
izontal edges between the G-cells of the first layer and only
vertical edges of the second layer. When routing a circuit,
it is often necessary for a global router to change direction
to reach another layer. In order to accomplish this, the
global router must pass through a via, which is a vertical
connection between layers in a multilayered printed circuit
board or integrated circuit.

In a given set of pins, a subset of pins with the same
potential is a net, and the pins of the same net need to be
connected. The maximum number of wires that an edge
can accommodate is called capacity. If the capacity of each
edge is ec and the number of wires passing through the edge
is ed , the congestion of the edge is ecg = ed/ec. When ed is
greater than ec, overflow occurs, and the overflow number
is eof = max ð0, ed − ecÞ. Overflow will affect the yield of the
chip. Therefore, the primary routing goal of this algorithm
is to guarantee the number of overflows is 0 and minimize
the wire length WL and the standard deviation Std of
congestion.

3.2. Deep Reinforcement Learning. RL consists of five core
elements: state st , action at , reward rt , policy π, and action-
value Qðs, aÞ, where t is the current time. st is the current

state of the environment and the agent. at is the action taken
by the agent at time t. rt is the reward obtained by the agent
taking the action at from state st to st+1. π is the basis for the
agent to take action at , which is usually a conditional prob-
ability distribution, that is, the probability of taking action at
under the condition of the state st , as shown in Formula (1).
Qðs, aÞ is an expectation function, which is the expectation
of the subsequent delayed rewards obtained by the agent
after taking action at in state st and policy π, as shown in
Formula (2):

π at stjð Þ = P a = at s = stjð Þ, ð1Þ

Q s, að Þ = Eπ rt + γrt+1 + γ2rt+2+⋯ st = s, at = ajÀ Á
: ð2Þ

The goal of RL is to search for a policy that maximizes
the cumulative rewards, and the predictive action-value
function Qðs, aÞ is often different from the target action-
value function Q∗ðs, aÞ. So the main process of RL is to con-
tinuously try and modify the predictive action-value so as to
make the predictive action-value function fit the target
action-value function, as shown in

Q∗ s, að Þ =max
π

E rt+1 st = s, at = a, πjð Þ, ð3Þ

where γ is a discount factor, γ ∈ ½0, 1�. If γ = 0, the current
action-value is only determined by the current reward. If
γ = 1, the subsequently delayed rewards have the same
weight as the current reward. Generally, a decimal between
0 and 1 is taken so that the weight of the current reward
is higher than subsequent delay rewards. The action-value
function can be derived into the Bellman equation form,
as shown in

Q s, að Þ = Eπ rt + γ max
at

Q∗ st , atð Þ st = s, at = aj
� �

: ð4Þ

DRL introduces ω to approximate the action-value
function. There are many types of approximation
methods, and the most commonly used is the neural net-
work method. The neural network in the DQN algorithm
is called the Q-network, and DQN uses two Q-networks:
they are the predictive Q-network and the target Q-net-
work. The predictive Q-network is used to predict the
action-value corresponding to the current state and choose

Layer 1

Layer 2

G-cell

Pin Routing channel

(a) Global routing structure

Vertical edge

Via

G-cell

Horizontal edge

(b) Grid graph

Figure 1: Global routing structure and its corresponding grid graph.

3Wireless Communications and Mobile Computing



action according to the ε‐greedy policy, as shown in For-
mula (5). The target Q-network is used to calculate the
target Q-value using a delayed update method. The
parameters of the predictive Q-network are copied to the
target Q-network at regular intervals. The DQN algorithm
uses the experience replay buffer to store the experience
<s, a, r, s′, end > generated by the interaction between the
agent and the environment, where s′ represents the next
state agent reached after taking action a in state s, and
end is a binary variable that represents whether the state
s is in the terminated state or not:

a sð Þ =
argmaxaQ s, a ; ωð Þ, rnd < ε,
random a ∈ Að Þ, else,

(
ð5Þ

where ε, rnd ∈ ½0, 1�, rnd is a random number between 0
and 1. When rnd < ε, the action with maximum action-
value is selected greedily; otherwise, a random action is
selected.

The training samples are randomly sampled from the
experience replay buffer. The states of the samples are the
input of the target Q-network. The action-values of the
actions are the output of the target Q-network. DQN is
always selected as the maximum action-value to calculate
the target Q-value, as shown in

yi = ri + γ max
a

Q∗ si, ai ; ω′
� �

, ð6Þ

where ω′ represents the parameters of the target Q-network,
copied from ω at regular intervals. Q∗ðs, aÞ is the target
action-value function.

4. DDQN-Based Global Router

4.1. Decomposition of Multipin Nets. In global routing, a net
usually contains two or more pins. If a net has more than
two pins, we call it a multipin net. It is difficult to directly
route a multipin net. Before routing starts, it is usually nec-
essary to decompose the multipin net into two-pin nets. To
shorten the wire length of two-pin nets after decomposition,
the Prim algorithm is used to construct a minimum span-
ning tree (MST) of a net. All pins are mapped on a two-

dimensional plane, and the weight between each two-pin
net is the Manhattan distance.

Figure 2 shows an example of decomposing a multipin
net. Figure 2(a) shows a complete graph of a net with four
pins. Pin A is selected as the starting point to construct an
MST. Figure 2(b) shows the MST structure of Figure 2(a).
Based on the tree structure, a four-pin net is decomposed
into 3 two-pin nets (AB, AC, and CD).

The longer the distance between two pins, the more dif-
ficult it is to find a path between them. Therefore, the DRL
training process proceeds in descending order of the two-
pin distance.

4.2. Encoding. A DDQN-based global router is executed in a
three-dimensional environment, and three-dimensional
coordinates represent the position of the pin. A two-pin
net can be determined by the coordinates of the pins at both
ends. Choose either end of the two-pin net as the starting
point and the other end as the ending point. Leading out
at the starting point, the current routing position of the wires
(that is, the agent’s position) can be represented by the coor-
dinates of the nonstarting end of the wires, and the edge
capacities of the agent position also need to be observed.
Therefore, a 15-bit code is used; the starting point, the
ending point, and the agent’s position are all represented
by a 3-bit code; and a 6-bit code represents the edge capac-
ities in six directions.

In order to describe the encoding method more clearly,
Figure 3 shows a coding example, the starting point coordinate
is (2, 0, 0), and the ending point coordinate is (0, 2, 0). The

2.5

3

2.5

3

1.5

1.5

A

B

C

D

(a) Complete graph of multipin net

2.5

1.5

1.5

A

B

C

D

(b) Two-pin net obtained by decomposition

Figure 2: Decomposition of a multipin net.

x

y0

1

2

21

1

Starting point
G-cell

Ending point

Agent
Path

z

Figure 3: An example of global routing.

4 Wireless Communications and Mobile Computing



agent’s position (shown by the red dot) is (1, 1, 1), and the red
wires are the path the agent traverses. Assuming that the
capacity of each edge is 2, in the order of left, right, front, back,
up, and down, the capacities of the six directions observed by
the agent are 0, 0, 1, 2, 0, and 2. In summary, the current state
can be encoded as 2 0 0 0 2 0 1 1 1 0 0 1 2 0 2.

The input of the Q-network is state codes, and the corre-
sponding output is the action-value of 6 directions. How-
ever, in the routing example given in Figure 3, the number
of actions the agent can perform is fewer than 6 at the coor-
dinate (1, 1, 1). In fact, in the global routing problem of the
two-layer structure, the maximum number of actions that
the agent can perform is 3, and the remaining three actions
are redundant. Thus, when an agent selects actions, the
actions that cannot be performed are first eliminated to pre-
vent the agent from performing redundant actions during
training, storing redundant experience, and then learning
redundant information. In Section 5, the reward line charts
with and without the action elimination method are com-
pared to verify its effectiveness.

4.3. Initialization of Experience Replay Buffer. Experience
replay is an essential mechanism of DQN. It is used to
replace the Q-table in Q-learning and update the parameters
of the Q-network. A piece of five-tuple information obtained
by the agent will be stored in the experience replay buffer
every time it interacts with the environment. The storage
principle of the experience replay buffer is first-in and
first-out. When the experience replay buffer is full, the earli-
est stored experience is deleted first.

There are usually two methods to initialize the experi-
ence replay buffer. The first method lets the agent explore
randomly in the environment, stores the acquired experi-
ence, and then starts training the Q-network when the expe-
rience replay buffer is full. The second method uses a
heuristic algorithm to search for the path in advance and
burn it into the experience replay buffer.

We use the second method to initialize the experience
replay buffer. The A∗-based global router is used to obtain
the initial routing results, where f ðnÞ = gðnÞ + hðnÞ is esti-
mated function. Cost function gðnÞ represents the cost of
performing step n. If overflow occurs, gðnÞ = −1000. In other
cases, gðnÞ = −1. Heuristic function hðnÞ is used to estimate
the cost of reaching the target position in the current posi-
tion, which is expressed by the Manhattan distance from
the current position to the target position.

Figure 4 shows a reward line chart of the two initializa-
tion methods. The blue line is the reward value of the first
initialization method, and the red line is the reward value
of the A∗ initialization method. The test example adopts
benchmark 1 of Section 5. It can be seen that the conver-
gence speed of the red line is much higher than that of the
blue line. The A∗ initialization method is used to make the
model converge to a better solution in fewer episodes than
the first method.

4.4. DDQN Implement. From the calculation formula (For-
mula (6)) of the target Q-value of DQN, it can be seen that
DQN always selects the maximum action-value to calculate

the target Q-value. Although greedily selecting the maxi-
mum action-value can make the algorithm get closer to the
estimated target Q-value quickly, the calculated model may
have a deviation compared with the actual result, causing
the problem of overestimation. In this section, we will pro-
pose a DDQN-based global router to solve this problem.

In DDQN, the selection of actions is carried out in the
predictive Q-network, and the evaluation of the actions is
carried out in the target Q-network. DDQN replaces the
action selection method with the maximum Q-value in the
target Q-network to the predictive Q-network, as shown in
Formula (7). The calculation formula of the target Q-value
is also modified accordingly, as shown in Formula (8):

a si ; ωð Þ = argmaxa′Q si, a′ ; ω
� �

, ð7Þ
yi = ri + γQ∗ si, a si ; ωð Þ ; ω′

� �
, ð8Þ

where argmax is the function that maximizes the indepen-
dent variable. Compared with DQN, DDQN modifies the
selection of actions when getting the target Q-value.

This paper uses the DDQN algorithm as the global
router design framework. The performance comparison of
DDQN and DQN in global routing will be discussed in
detail in Section 5, and then, the detailed design part of the
DDQN-based global router will be introduced as follows.

4.4.1. Reward Design. The environment will reward any
action the agent takes. A reward value can be positive, neg-
ative, and zero. A negative value means that the environ-
ment imposes adverse penalties on the agent, and DDQN
maximizes a cumulative reward. [16] considers shortening
the wire length as the optimization goal and has the follow-
ing reward function:

r a, si+1ð Þ =
+100, si+1 is end,
−1, else,

(
ð9Þ

2000

1500

1000

500

Re
w

ar
d

0

–500

–1000

–1500

–2000

0 25 50 75 100

Episodes

With A⁎

125 150 175 200

without A⁎

Figure 4: A reward line chart of two initialization methods.

5Wireless Communications and Mobile Computing



where the agent gets a reward value of +100 when it reaches
the target state; in other cases, whether the agent successfully
executes an action or is forced to stay in place because the
edge capacity is 0, it will get a reward value of -1. This
reward function enables the agent to reduce the actions per-
formed in the environment as much as possible to reduce
the wire length.

However, the above method does not reflect the actual
routing situation and lacks consideration for sharing the
net’s wires. As shown in Figures 5(a) and 5(b), Pin A1, Pin
A2, and Pin A3 belong to the same net. The two-pin A13
and two-pin A23 are obtained by the net decomposition
method. Using the reward function of Formula (9) to calcu-
late, the cumulative reward of Figures 5(a) and 5(b) is both
193. Figure 5(b) makes the wire length shorter than
Figure 5(a) through the sharing of wires. Therefore, Formula
(9) is unreasonable. We mark the paths that have been tra-
versed in the net and set the reward value to 0 when wire
sharing occurs. In addition, we also need to consider the
congestion of the routing result. A large number of routing
resources concentrated in a certain location will affect the
performance of the chip. We adjust the reward value of the
high and low congestion areas to obtain the following
reward function:

r a, si+1ð Þ =
+100, si+1 is end,
0, si+1 isn’t end and sharing,
ed − ec/2ð Þ/ec − 1, else,

8>><
>>:

ð10Þ

where ec and ed are the capacity and demand of an edge,
respectively. According to this reward function, we take half
of ec as the threshold, and the result of ec/2 is rounded down.
If ed is higher than ec/2, a reward r < 0 is given; otherwise, a
reward r ≥ 0 will be given. The experimental comparison of
the two reward functions will be given in Section 5.

4.4.2. Neural Network Architecture. Both the evaluation Q
-network and the target Q-network are three-layer fully con-
nected neural networks. The number of neurons in the first
to third layers is 32, 64, and 32, respectively. The activation
function is the ReLU linear rectification function. The input
layer size is 15, and the output layer size is 6.

4.4.3. Episode. Path planning for all two-pin nets is an epi-
sode. After an episode, the complete execution policy of
the global routing will be obtained. DRL will perform
repeated training under the same benchmark until the algo-
rithm reaches a convergence state.

4.4.4. Max Step. During the training process, the agent may
not find the target state for a long time or cannot find the
target state at all, thus falling into an infinite loop. Therefore,
each two-pin net needs to be assigned a max number of
steps. When the agent reaches the max step and has not
found the target state, this two-pin net is regarded as a fail-
ure routing in this episode.

4.4.5. Loss Function. We can use the Mean Square Error
(MSE) to calculate the Euclidean distance between the pre-
dicted Q-value and the target Q-value. The loss function is
shown in Formula (11). The loss function obtains the gradi-
ent equation by deriving network parameters ω and uses the
Adam optimizer to perform stochastic gradient descent [34]:

J ωð Þ = 1
2m〠

m

i=1
yi −Q si, ai ; ωð Þ½ �2, ð11Þ

where m is the number of training samples and yi is calcu-
lated by Formula (8).

4.5. Concurrent Training. Section 4.4 mentioned that by
changing the reward function to guide the agent to share
wires within the net, it could be found that the relationship
among two-pin nets inside a net cooperates. However, the
two-pin nets of different nets compete for edge capacity. In
serial training (the nets are routed in a given order), the nets
that are routed earlier are regarded as obstacles by the nets
that are routed later. As a result, the later nets are more dif-
ficult to route than the previous nets.

In response to the above problems, we propose a concur-
rent training method. In a given environment, the nets are
sorted in descending order of the number of pins, and then,
the ordered nets are stored in a concurrent queue. Suppose
that the number of nets is N , the value of max step is
maxStep, the number of two-pin nets of Net i is nitwopins,
and the max number of executable steps that Net i can per-
form is nitwopins × maxStep. An episode is divided into multi-
ple time slices in concurrent training. A time slice allocates 1

A1

A2

A3

Via

Via

(a) A global routing solution without wire sharing

A1

A2

A3

Via

Via

Wire
sharing

(b) A global routing solution with wire sharing

Figure 5: An example of wire sharing.

6 Wireless Communications and Mobile Computing



step for each net in the concurrent queue (if the max step of
Net i has been exhausted or Net i has been successfully rou-
ted, Net i will no longer enter the concurrent queue in the
current episode). Through concurrent training, the priorities
of all nets in the queue are increased to the same level. The
performance comparison of serial training and concurrent
training will be discussed in detail in Section 5.

4.6. Algorithm Flow Chart and Complexity Analysis. Figure 6
is a flow chart, and Algorithm 1 is the pseudocode of the
DDQN-based global router. Lines 1-4 are multipin net
decomposition, encoding, network weight initialization,
and experience replay buffer initialization, respectively.
Lines 6-20 are network training. Line 7 is two-pin net tra-
versing. Line 8 is the first state acquisition of a two-pin
net. Lines 11-13 are path finding. Line 14 is experience stor-
ing. Lines 15-17 are experience sampling, loss acquisition,
and gradient descent, respectively.

We explain the algorithm complexity of each step.

4.6.1. Decomposition of Multipin Nets. The first step of the
algorithm is to decompose the multipin nets. We use the
Prim algorithm to construct the MST. In a net, the algorithm
randomly selects a pin as the root point of the spanning tree.
Mark the root as visited and initialize the distance from the
root to all other unvisited points. Then repeat the following
steps: select a point from the unvisited points with the min-
imum distance to the spanning tree, and add the point to the
spanning tree. This process uses a priority queue to store
unvisited points, which is used to find the nearest unvisited
point. Therefore, the time complexity of the Prim algorithm
with the priority queue is Oðn log nÞ, where n is the number
of pins in the net. In the global routing with m nets, the total
time complexity is Oð∑m

i=1ni log niÞ, where ni is the number
of pins of Net i.

4.6.2. Encoding. The starting point of each two-pin net is
coded. It only takes Oð1Þ time to convert a two-pin net into
a 15-bit code. If the number of nets is m, then the time com-
plexity is OðmÞ.

4.6.3. Initialization of the Experience Replay Buffer. This
algorithm searches the paths of all two-pin nets through
A∗ algorithm for initialization. The path search space of a
two-pin net is limited to the Minimum Bounding Box
(MBB) to reduce time consumption. Next, we analyze the
time complexity of this step. If an MBB of a two-pin net

1: Decompose multi-pin nets with Prim algorithm
2: Encode two-pin nets
3: Initialize Q-network with random weights
4: Initialize experience replay buffer with A∗ router
5: Network training:
6: for episode : episodes do
7: for two-pin net : two-pin nets do //Concurrent
8: Get initial state s0 code for two-pin net
9: for t = 1 : max step do
10: Eliminate redundant actions
11: With ε − greedy policy, select an action at
12: Take action at in environment and get reward

rt and state st+1
13: Update routing information
14: Store experience <st , at , rt , st+1, end > 15
15: Randomly sample training samples
16: Set yj = r j + γQ∗ðsj, aðsj ; ωÞ ; ω′Þ
17: Perform a gradient descent step on MSE(yj,

Qðsj, aj ; ωÞ)
18: end for
19: end for
20: end for

Algorithm 1: DDQN-based global router.

Loss function

Q (st+1, argmaxa
t
 Q (st, at; 𝜔t); 𝜔t)

(st, at, r, st+1, end)

argmaxa
t
 Q (st, at; 𝜔t)

maxa
t
 Q (s

t+1, at
; 𝜔'

t
)

Copy
patameters

Update

rSimulated
environment

Evaluation network

Start

Decomposition of
multi-pin nets

Encoding

Initialization of the
experience replay buffer

Experience
replay buffer

Outputing routing results

End

DDQN implement

Training samples

Target network

St+1

St

Figure 6: Algorithm flow chart.

7Wireless Communications and Mobile Computing



has k G-cells, then in the worst case, all k G-cells will be vis-
ited, where k = a × b × h and a, b, and h are the length, width,
and height of the MBB, respectively. A∗ expands the G-cell
with the maximum evaluation value f ðnÞ each time. This
process requires a priority queue to store the G-cells with
their evaluation value. The time consumption for the inser-
tion, deletion, and update of the priority queue is Oðlog kÞ.
Therefore, in the worst case, the time complexity of A∗ is
Oðk log kÞ. In the case of t two-pin nets, the required time
for this step is Oð∑t

i=1ki log kiÞ, where ki is the MBB size of
Net i.

4.6.4. DDQN Implement. When the episode and the max
step are huge, the time consumed by the gradient descent
and parameter copy process can be regarded as a constant.
In the worst case, each episode executes nt steps, where nt
is the number of max steps, so the worst time complexity
of DDQN is Oð1Þ.

4.6.5. Complexity of DDQN-Based Global Router. The time
complexity of the DDQN-based global router is determined
by the most time-consuming step. With the constraints of
the global routing model, there is ki ≥ ni, so the most time-
consuming step is the experience replay buffer initialization,
and the total time complexity is Oð∑t

i=1ki log kiÞ.

5. Experimental Results

5.1. Development Environment. We use Python and Tensor-
Flow machine learning libraries to implement this algo-
rithm. The experimental environment is Intel Core i5-
9500F CPU, 8.0G memory, and Windows 10 operating sys-
tem. The benchmarks to test this algorithm are automati-
cally generated by the Benchmark Generator provided by
[16]. The setting of hyperparameters is consistent with [16].

5.2. Wire Length and Convergence Comparisons between
DQN-Based and DDQN-Based Global Router. In order to
verify the enhanced performance of the DDQN-based global

router after overcoming overestimation, we compare the two
routers in terms of wire length and convergence.

5.2.1. The Comparative Experiment of Wire Length. As
shown in Table 1, we generated ten benchmarks for the
experiment. Benchmarks of the same scale have different
pin distributions. For example, the benchmarks of No. 1
and No. 2 have the same grid size, number of nets and pins,
and capacities of each edge, but they have different pin dis-
tributions. DQN and DDQN models are training with 200
episodes, and other parameters are the same. It can be seen
that the DDQN router has achieved wire length reduction
in all benchmarks. In the test results of No. 5, No. 6, and
No. 8, the DQN router has slow convergence due to overes-
timation problems, and the DQN routing still failed (router
failed to find path) after training. DDQN successfully passed
the test in ten benchmarks.

5.2.2. The Comparative Experiment of Convergence. Figure 7
presents the reward line charts that reflect the convergence
speed of two routers. The grey line in the charts represents
the DQN-based global router reward line, while the orange
line represents the DDQN-based router. As shown in
Figures 7(a)–7(j), each chart corresponds to the reward line
chart of benchmarks 1 to 10, respectively, as listed in
Table 1. By comparing the reward in each episode, the gap
between the convergence performance of the two routers
can be determined. It is worth noting that a higher reward
value indicates a better routing result learned by the agent.

To quantify the superiority of the DDQN-based router
over the DQN-based, the win rate is calculated using the for-
mula ½ða − bÞ/a� × 100%, where a is the number of times that
the DDQN-based global router’s reward value is greater than
the DQN-based in all episodes and b is the number of times
the DDQN-based global router’s reward value is less than
the DQN-based in all episodes. In the ten benchmarks, the
DDQN-based global router exhibits better convergence per-
formance than the DQN-based. Specifically, in the bench-
marks corresponding to Figures 7(a) and 7(e)–7(h), the

Table 1: Wire length comparison between DQN-based and DDQN-based global routers.

No. Grid size Net number Max step Capacity
Wire length

Optimization rate
DQN DDQN

1 8∗8∗2 20 2 3 167 165 1.20%

2 8∗8∗2 20 2 3 170 168 1.18%

3 8∗8∗2 20 5 4 264 257 2.65%

4 8∗8∗2 20 5 4 250 249 0.40%

5 8∗8∗2 40 2 4 Fail 277 —

6 8∗8∗2 40 2 4 Fail 293 —

7 16∗16∗2 40 2 3 480 467 2.71%

8 16∗16∗2 40 2 3 Fail 521 —

9 16∗16∗2 40 5 5 949 937 1.26%

10 16∗16∗2 40 5 5 806 801 0.62%

Average 1.43%

8 Wireless Communications and Mobile Computing



2000

1500

1000

500

0

–500

–1000

Re
w

ar
d

–1500

–2000

0 25 50 75 100

Episodes

125 150

DDQN win rate: 54%

175 200

DQN
DDQN

(a) No. 1

2000

1500

1000

500

0

–500

–1000

Re
w

ar
d

–1500

–2000

0 25 50 75 100

Episodes

125 150

DDQN win rate: 26%

175 200

DQN
DDQN

(b) No. 2

Re
w

ar
d

0 25 50 75 100

Episodes

125 150

DDQN win rate: 20%

175 200

2000

0

–2000

4000

–4000

DQN
DDQN

(c) No. 3

Re
w

ar
d

0 25 50 75 100

Episodes

125 150

DDQN win rate: 13%

175 200

2000

0

–2000

4000

–4000

DQN
DDQN

(d) No. 4

4000

3000

2000

1000

0

–1000

–2000

Re
w

ar
d

–3000

–4000

0 25 50 75 100

Episodes

125 150

DDQN win rate: 48%

175 200

DQN
DDQN

(e) No. 5

3000

2000

1000

0

–1000

–2000

Re
w

ar
d

–3000

–4000
0 25 50 75 100

Episodes

125 150

DDQN win rate: 88%

175 200

DQN
DDQN

(f) No. 6

Figure 7: Continued.

9Wireless Communications and Mobile Computing



convergence performance of the DDQN-based global router
is significantly higher than that of the DQN-based.

5.3. Verification of Action Elimination Method. The action
elimination method prevents the agent from performing
unnecessary actions in the environment and reduces the
agent from learning redundant information. We compare
the convergence speed of the DRL router before and after
the action elimination method to verify the enhancement
of the DRL router performance by this method.

We compare the performance of the DDQN-based
global router with and without the action elimination
method. Figures 8(a)–8(j) correspond to the line charts of
the reward value of benchmarks 1 to 10 in Table 1. The
orange line in Figure 8 is the reward value of the DDQN-
based global router, and the blue line is the reward value of
the DDQN-based global router with the action elimination
method. From the experimental results, by eliminating
unnecessary behaviours, the convergence speed of the router
is optimized in ten benchmarks. Therefore, it is proved that

this method can effectively enhance the convergence speed
of the DDQN router.

5.4. Routability Comparison between Serial Training and
Concurrent Training. The concurrent training method elim-
inates the unfairness caused by serial training, and the later
nets can compete with the earlier nets for routing resources.
The failure rates of later nets are reduced by overcoming the
unfairness, thereby increasing the routability. We set up two
experimental comparisons to verify that concurrent training
can increase the routability of the DDQN-based global
router: (1) compare the value of episode of the first success-
ful routing in 200 episodes, as shown in Figure 9(a), and (2)
compare the number of successful routing times in 200 epi-
sodes, as shown in Figure 9(b).

Figure 9(a) is a bar chart of the episode value for the first
successful serial and concurrent training routing. The green
bar represents serial training, and the purple represents con-
current training. It can be seen that in the ten benchmarks,
concurrent training can learn a successful routing solution

3000

2000

1000

0

–1000

–2000

Re
w

ar
d

–3000

–4000

0 25 50 75 100

Episodes

125 150

DDQN win rate: 71%

175 200

DQN
DDQN

(g) No. 7

3000

2000

1000

0

–1000

–2000

Re
w

ar
d

–3000

–4000

0 25 50 75 100

Episodes

125 150

DDQN win rate: 73%

175 200

DQN
DDQN

(h) No. 8

Re
w

ar
d

0 25 50 75 100

Episodes

125 150

DDQN win rate: 57%

175 200

10000

7500

5000

2500

0

–2500

–5000

–7500

–10000

DQN
DDQN

(i) No. 9

Re
w

ar
d

0 25 50 75 100

Episodes

125 150

DDQN win rate: 11%

175 200

7500

5000

2500

0

–2500

–5000

–7500

DQN
DDQN

(j) No. 10

Figure 7: Reward line chart of DQN-based and DDQN-based global routers.

10 Wireless Communications and Mobile Computing



0 25

2000

1500

1000

500

0

–500
Action elimination
win rate: 66%Re

w
ar

d

–1000

–1500

–2000

50 75 100

Episodes

125 150 175 200

Without action elimination
With action elimination

(a) No. 1

Action elimination
win rate: 31%

0 25

2000

1500

1000

500

0

–500Re
w

ar
d

–1000

–1500

–2000

50 75 100

Episodes

125 150 175 200

Without action elimination
With action elimination

(b) No. 2

0 25 50 75 100

Episodes

125 150 175 200

Without action elimination
With action elimination

4000

2000

0 Action elimination
win rate: 57%Re

w
ar

d

–2000

–4000

(c) No. 3

0 25 50 75 100

Episodes

125 150 175 200

Without action elimination
With action elimination

4000

2000

0 Action elimination
win rate: 10%Re

w
ar

d

–2000

–4000

(d) No. 4

0 25

4000

3000

2000

1000

0

–1000
Action elimination
win rate: 57%Re

w
ar

d

–2000

–3000

–4000

50 75 100

Episodes

125 150 175 200

Without action elimination
With action elimination

(e) No. 5

0 25

3000

2000

1000

0

–1000
Action elimination
win rate: 47%Re

w
ar

d

–2000

–3000

–4000
50 75 100

Episodes

125 150 175 200

Without action elimination
With action elimination

(f) No. 6

Figure 8: Continued.

11Wireless Communications and Mobile Computing



faster. Figure 9(b) is a bar chart of the number of successful
routing in 200 episodes. The orange bar represents serial
training, and the blue bar represents concurrent training.
In the ten benchmarks, the number of successful routing of
concurrent training is not less than that of serial training.
These two experimental results prove that concurrent train-
ing can more reasonably allocate routing resources and sig-
nificantly increase routability.

5.5. Routing Result Comparison of the Two Reward Functions.
This part compares the performance of reward function 1
represented by Formula (9) and reward function 2 repre-
sented by Formula (10) in the DDQN-based global router.
Reward function 2 focuses on sharing wires within the nets
and the dispersion of the routing resources. Therefore, we
compare the wire length and the congestion standard devia-
tion of the routing solutions with the two reward functions.

The experimental results are shown in Table 2. The ten
benchmarks are the same as in Table 1. The routing solu-
tions with reward function 2 are better than reward function

1 in terms of wire length and congestion standard deviation.
From the average of the results, it is possible to obtain 1.07%
wire length and 5.71% congestion standard deviation opti-
mization. Therefore, the experimental results can prove that
reward function 2 is better than reward function 1. To
explain the distribution of routing resources more intui-
tively, we have drawn the heat maps of the routing solutions
of benchmark 9 in Figure 10. Figures 10(a) and 10(b) repre-
sent the first and second layers of reward function 2, respec-
tively. Figures 10(c) and 10(d) represent the first and second
layers of reward function 1, respectively. A square in the heat
maps represents the remaining capacity of one edge. The
lighter the square, the more demands of the edge. Compared
with reward function 1, reward function 2 results in fewer
edges with capacity ec < 2. The experimental results have
confirmed that reward function 2 both spreads the routing
resources and reduces the wire length, which is in line with
the original design intention. The DDQN-based global
router in this paper will not overflow, so there will be no
negative values in the heat maps.

Action elimination
win rate: 18%

0 25

3000

2000

1000

0

–1000Re
w

ar
d

–2000

–3000

–4000

50 75 100

Episodes

125 150 175 200

Without action elimination
With action elimination

(g) No. 7

Action elimination
win rate: 37%

0 25

3000

2000

1000

0

–1000Re
w

ar
d

–2000

–3000

–4000

50 75 100

Episodes

125 150 175 200

Without action elimination
With action elimination

(h) No. 8

0 25 50 75 100

Episodes

125 150 175 200

Without action elimination
With action elimination

10000

2500

5000

7500

0 Action elimination
win rate: 18%Re

w
ar

d

–5000

–10000

–7500

–2500

(i) No. 9

0 25 50 75 100

Episodes

125 150 175 200

Without action elimination
With action elimination

2500

5000

7500

0 Action elimination
win rate: 47%Re

w
ar

d

–5000

–7500

–2500

(j) No. 10

Figure 8: The enhanced performance brought by action elimination in ten benchmarks.

12 Wireless Communications and Mobile Computing



94

74

129

66

49

73

27

130

150

86

51

20

41
50

39

71

19

121

84

34

0

20

40

60

80

100

120

140

160

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10

Serial training
Concurrent training

Ep
iso

de
 v

al
ue

 fo
r t

he
 fi

rs
t s

uc
ce

ss
fu

l r
ou

tin
g

(a) Episode value for the first successful routing

Serial training
Concurrent training

16
22

8

77

47

20

56

1 3

3033

66

15

80
73

20

85

4
8

39

0

10

20

30

40

50

60

70

80

90

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10

Th
e n

um
be

r o
f s

uc
ce

ss
fu

l r
ou

tin
g

(b) The number of successful routing

Figure 9: The episode value of the first successful routing and the number of successful routing of serial training and concurrent training.

Table 2: Comparison of wire length and congestion standard deviation of two reward functions.

No.
Wire length (WL)

Congestion standard deviation
(Std)

Optimization rate (%)

Function 1 Function 2 Function 1 Function 2 WL Std

1 165 165 0.95 0.85 0.00 10.53

2 168 165 0.94 0.94 1.79 0.00

3 257 248 1.30 1.12 3.50 7.44

4 249 245 1.23 1.16 0.40 5.69

5 277 274 1.31 1.23 1.08 2.38

6 293 290 1.32 1.23 1.02 6.82

7 467 466 0.83 0.81 0.21 4.71

8 521 504 0.95 0.89 3.26 6.32

9 937 934 1.36 1.29 0.32 7.19

10 801 794 1.16 1.09 0.87 6.03

Average 1.25 5.71

13Wireless Communications and Mobile Computing



5.6. Test of Conjoint Optimization of DDQN-Based Global
Router. The main advantage of the DRL-based global router
is that it can consider subproblems jointly. We regard the
routing of a two-pin net as a subproblem; the DRL-based
global router can optimize the routing scheme of the current
subproblem according to the global situation. The heuristic
algorithm does not possess this feature. [16] verifies the con-
joint optimization capability of the DRL-based global router
by comparing the sequential A∗-based global router, so we
use the same method for verification.

Given a series of two-pin nets, use sequential A∗-based
and DDQN-based global routers for routing. A∗ relies on
the valuation function f ðnÞ = gðnÞ + hðnÞ to find a way and
always chooses the minimum valuation for expansion. When
routing one of the many two-pin nets, A∗ can only know the
routing results that have been completed, completely neglect-
ing to reserve routing resources for incompletely routed two-
pin nets. It is worth noting that no matter how large the cost

is set for the cost function gðnÞ, the overflow of the routing
solution cannot be avoided in sequence A∗. The DDQN-
based global router learns historical experience through the
experience replay mechanism, and these experiences are
global. Therefore, every step of DDQN is determined
through historical experience, and this mechanism manufac-
tures its conjoint optimization capabilities.

The results of the sequence A∗-based and DDQN-based
global routers are shown in Table 3. We should note that the
primary optimization goal of global routing is the overflow.
The routing result with overflow will make the chip impos-
sible to manufacture. In the test of ten benchmarks, the rout-
ing results of sequence A∗ have overflowed, and the number
of overflows is large. In contrast, the DDQN-based global
router has obtained no overflow routing solutions in ten
benchmarks. The router needs to bypass the crowded areas
to avoid overflow, which will produce a large amount of wire
length. Under the conjoint optimization of DDQN, the

0 5.0
5.0
5.0

5.0
5.0

5.0

5.0
5.0

5.0

5.0

5.0 5.0

4.0
4.0

4.0
4.0 4.0

4.0
4.04.0

4.0 4.0
4.0 4.0 4.0

4.0 4.0 4.0

4.0

4.0

4.0
4.0
4.0
4.0
4.0
4.0
4.0

4.0 4.0 4.0
4.0
4.0 4.0 4.0 4.0 4.0

4.0 4.0 4.0 4.0

4.0 4.0 4.0
4.0
4.0
4.04.0

4.04.0

4.04.0

4.04.0
4.0
4.0 4.0

4.0

4.0
4.0

4.0 4.0 4.0
4.0
4.04.0

4.04.04.04.0

4.0
4.0 4.0
4.0 4.04.0

4.0
4.0

4.0
4.0

3.0
3.0 3.0 3.0 3.0 3.0

3.0 3.03.03.0

3.0 3.0 3.0
3.0

3.0 3.0
3.0

3.0 3.0 3.0
3.03.03.0
3.0

3.0

3.03.0
3.0 3.0

3.03.0
3.03.03.0

3.0 3.0 3.0
3.0 3.0 3.0

3.0
3.0
3.0

3.0
3.0

3.0

3.03.0

3.0

3.0 3.0 3.0
3.0 3.0 3.0

3.0
2.0

2.0 2.0 2.0 2.0
2.0

2.0
2.02.02.0 2.0 2.0

2.0 2.0
2.0

2.0
2.0
2.0
2.0

2.02.0
2.0

2.0 2.0
2.02.0

2.0 2.0 2.0

2.02.0

2.0 1.0 1.0
1.0
1.0

1.0
1.01.01.0

1.0 1.0
1.0

1.0 1.0
1.0 1.0 1.0 1.0 1.0

1.01.0

0.0

0.00.00.0

0.0 0.0

3.0 3.0 3.0 4.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 5.0 5.0 5.0
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

5.0 5.0 5.0 5.0 5.0 5.0

5.0

5.0 5.0

5.0 5.0 5.0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1413121110987654321

(a) The first layer of reward function 2

5.0 5.0 5.0 5.0 5.0 4.0 5.0 5.0 4.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0
5.0 4.0 5.0 5.0 4.0 4.0 2.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 5.0 4.0
3.0 4.0 5.0 5.0 3.0 3.0 3.0 4.0 4.0 3.0 3.0 4.0 5.0 4.0 5.0 4.0
4.0 3.0 4.0 4.0 3.0 3.0 1.0 3.0 5.0 0.0 4.0 4.0 4.05.0 5.0 4.0
3.0 4.0 3.0 4.0 1.0 3.0 2.0 2.0 4.0 0.0 3.0 5.0 5.0 4.0 5.0 2.0
4.0 2.0 1.0 3.0 2.0 4.0 2.0 2.0 3.0 0.0 4.0 4.0 5.0 4.0 4.0 2.0
3.0 2.0 0.0 4.0 2.0 3.0 2.0 3.0 2.0 2.0 3.0 5.0 4.0 4.0 4.0 3.0
3.0 4.0 2.0 3.0 2.0 2.0 2.0 3.0 1.0 2.0 2.0 5.0 5.0 4.0 4.0 2.0
4.0 4.0 3.0 4.0 2.0 2.0 2.0 3.0 2.0 0.0 2.0 5.0 5.0 3.0 3.0 3.0
4.0 4.0 4.0 2.0 2.0 2.0 2.0 3.0 2.0 0.0 2.0 5.0 5.0 3.0 4.0 3.0
4.0 4.0 4.0 2.0 4.0 3.0 3.0 2.0 1.0 0.0 2.0 5.0 5.0 4.0 4.0 3.0
3.0 4.0 5.0 2.0 5.0 3.0 4.0 3.0 1.0 2.0 3.0 5.0 5.0 4.0 4.0 2.0
4.0 3.0 5.0 2.0 5.0 2.0 5.0 4.0 2.0 3.0 3.0 5.0 5.0 4.0 4.0 2.0
4.0 4.0 5.0 3.0 5.0 3.0 5.0 4.0 1.0 3.0 5.0 5.0 4.0 4.0 3.0 3.0
5.0 5.0 5.0 4.0 5.0 5.0 5.0 5.0 2.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(b) The second layer of reward function 2

5.0 5.0 5.0 5.0 5.0 5.0
5.05.05.05.05.05.0

5.0

5.0
5.0
5.0

5.0
5.0 5.0

5.0

5.0

5.0 5.0
5.0 5.0 5.0

5.0
5.0 5.0 5.0 5.0 5.0 5.0 5.0

5.0

5.0

5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
5.05.05.0

5.0
5.0
5.05.0

4.0
4.04.0

4.0 4.0 4.0 4.0
4.04.04.04.04.04.0

4.0

4.0
4.0
4.0
4.0
4.0
4.0

4.0
4.0

4.0 4.0
4.0
4.0 4.0

4.0 4.0 4.0 4.0
4.0 4.0

4.0
4.0

4.0 4.0 4.0 4.0 4.0
4.0
4.0 4.0 4.0

4.0
4.0 4.0

4.0 4.0
4.0

4.0

4.0
4.04.0 4.0 4.0

4.0

4.0 4.0

4.0

4.0

4.0 4.0
4.0

4.04.04.0

4.0
4.0

4.0

4.0

4.04.0

4.04.0
4.0

4.0 3.0
3.0
3.0

3.03.0
3.0 3.0 3.0

3.0
3.0

3.03.03.0
3.0

3.0 3.03.03.0
3.0

3.0 3.0 3.0
3.0

3.0
3.0 3.0 3.0 3.0

3.03.0
3.0
3.0

3.0
3.0 3.0 3.0

3.0
3.0 3.0

3.0

3.0
3.03.0

3.0
3.0

2.0 2.0 2.0 2.0

2.02.0
2.0

2.0
2.0 2.0 2.0 2.0 2.0

2.0
2.0
2.02.0

2.0

2.0 2.0 2.0 2.0 2.0

2.02.02.02.02.0

2.0 2.0 2.0 2.0

2.02.0
2.01.0

1.0
1.0

1.0 1.0 1.0 1.0

1.0 1.0

1.01.0
1.01.01.0

1.0
1.0

1.0

1.0 1.0
1.0

0.0

0.0

0.00.00.00.00.0
0.0

0.0

0.0
0.0

0.0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1413121110987654321

(c) The first layer of reward function 1

5.0 5.0 5.0 5.0 5.0 4.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0
5.0 4.0 5.0 5.0 5.0 4.0 3.0 5.0 5.0 3.0 5.0 5.0 5.0 4.0 5.0 4.0
3.0 3.0 5.0 4.0 4.0 3.0 3.0 4.0 5.0 1.0 4.0 5.0 5.0 4.0 5.0 4.0
3.0 2.0 4.0 3.0 4.0 3.0 1.0 3.0 4.0 2.0 4.0 5.0 5.0 3.0 5.0 4.0
3.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 4.0 3.0 2.0 5.0 4.0 4.0 5.0 3.0
4.0 2.0 1.0 2.0 3.0 3.0 2.0 3.0 2.0 3.0 3.0 4.0 4.0 4.0 5.0 2.0
3.0 1.0 0.0 3.0 3.0 2.0 2.0 2.0 2.0 4.0 2.0 5.0 4.0 4.0 4.0 5.0
3.0 3.0 2.0 2.0 3.0 2.0 2.0 2.0 1.0 2.0 1.0 5.0 5.0 4.0 4.0 4.0
4.0 4.0 2.0 4.0 2.0 2.0 2.0 3.0 2.0 0.0 2.0 5.0 5.0 3.0 3.0 4.0
4.0 3.0 3.0 1.0 3.0 3.0 3.0 3.0 1.0 0.0 1.0 5.0 5.0 3.0 5.0 4.0
4.0 3.0 4.0 1.0 4.0 3.0 5.0 2.0 0.0 0.0 3.0 5.0 5.0 5.0 5.0 4.0
3.0 3.0 5.0 1.0 5.0 5.0 5.0 3.0 1.0 1.0 3.0 5.0 5.0 5.0 4.0 5.0
4.0 3.0 5.0 3.0 5.0 1.0 5.0 4.0 1.0 2.0 3.0 5.0 5.0 5.0 4.0 3.0
5.0 4.0 5.0 4.0 5.0 2.0 4.0 4.0 1.0 2.0 5.0 5.0 5.0 5.0 3.0 3.0
5.0 5.0 5.0 5.0 5.0 4.0 5.0 4.0 3.0 4.0 5.0 5.0 5.0 5.0 4.0 4.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(d) The second layer of reward function 1

Figure 10: Heat maps of routing solutions of benchmark 9.

14 Wireless Communications and Mobile Computing



routing among the subproblems is coordinated to reduce the
wire length generated by bypassing. We can see from the
results that although the wire length of the DDQN-based
global router is decreased by 1.40% compared to sequence
A∗ on average, the overflow problem is fundamentally solved.

6. Conclusions

By combining four effective optimization strategies, this
paper proposes a high-quality DRL-based global routing
algorithm. First of all, to avoid the overestimation problem
caused by Q-learning, a better-performance DDQN-based
global router is proposed. Secondly, an action elimination
method is proposed to reduce the redundant information
learned by the agent and enhance the convergence speed of
the DDQN-based global router. Thirdly, to solve the prob-
lem of unfair distribution of routing resources, a concurrent
training method is proposed. Through the experimental
results, the router with a concurrent training method can
obtain successful routing solutions faster and increase the
routability. In a given 200 episodes, more successful routing
solutions are obtained than serial training. Fourthly, to
reduce the wire length and decentralize the routing resources
of the solutions, a new reward function is designed in this
paper. In the experimental comparison, the wire length
and the standard deviation of the congestion have been
optimized.

In conclusion, four optimization methods proposed in
this paper can further enhance the performance of the
DRL-based global router, which can achieve superior perfor-
mance compared to the heuristic method and DRL-based
global router, so as to obtain high-quality global routing
results without overflow. In future work, we will study the
multiagent reinforcement learning method for the global
routing problem.

Data Availability

The source data used in the study is available on the
following website: https://github.com/YangLiliang/DRL-for-
Global-Routing.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors would like to thank H. Liao et al. of the
Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA. This work was partially sup-
ported by the National Natural Science Foundation of China
under Grant No. 61877010.

References

[1] J. Cohoon, J. Kairo, and J. Lienig, “Evolutionary algorithms for
the physical design of VLSI circuits,” in Advances in Evolution-
ary Computing, pp. 683–711, Springer, 2003.

[2] M. R. Kramer, “The complexity of wirerouting and finding
minimum area layouts for arbitrary VLSI circuits,” in
Advances in Computing Research, vol. 2, pp. 129–146, JAI
Press Inc, 1984.

[3] H. Jiang and S. S. Sapatnekar, “A survey on multi-net global
routing for integrated circuits,” Integration, vol. 31, no. 1,
pp. 1–49, 2001.

[4] H. Liao, Q. Dong, X. Dong et al., “Attention routing: track-
assignment detailed routing using attention-based reinforce-
ment learning,” in Proceedings of the ASME 2020 International
Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. Volume 11A: 46th
Design Automation Conference (DAC), Virtual, Online, 2020.

[5] K. Namba, N. Takashina, and H. Ito, “Design for delay mea-
surement aimed at detecting small delay defects on global
routing resources in FPGA,” IEICE Transactions on Informa-
tion and Systems, vol. E96.D, no. 8, pp. 1613–1623, 2013.

[6] S. Held, D. Muller, D. Rotter, R. Scheifele, V. Traub, and
J. Vygen, “Global routing with timing constraints,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 2, pp. 406–419, 2018.

[7] T. Koide, T. Suzuki, S. I. Wakabayashi, and N. Yoshida, “An
efficient timing-driven global routing method for standard cell
layout,” IEICE Transactions on Information and Systems,
vol. 79, no. 10, pp. 1410–1418, 1996.

Table 3: Comparison of wire length and overflow of two routers.

No.
Wire length (WL) Overflow (OF) Optimization rate (%)

A∗-based DDQN-based A∗-based DDQN-based WL OF

1 163 165 27 0 -1.23 100

2 159 165 19 0 -3.77 100

3 243 248 16 0 -2.06 100

4 249 245 12 0 1.60 100

5 272 274 22 0 -0.74 100

6 277 290 32 0 -4.69 100

7 464 466 8 0 -0.43 100

8 496 504 19 0 -1.61 100

9 932 934 16 0 -0.21 100

10 787 794 14 0 -0.89 100

Average -1.40 100

15Wireless Communications and Mobile Computing

https://github.com/YangLiliang/DRL-for-Global-Routing
https://github.com/YangLiliang/DRL-for-Global-Routing


[8] M. A. Wiering and M. Van Otterlo, “Reinforcement learning,”
in Adaptation, Learning, and Optimization, vol. 12, no. 3,
2012Springer, 2012.

[9] N. Xie, H. Hachiya, and M. Sugiyama, “Artist agent: a rein-
forcement learning approach to automatic stroke generation
in oriental ink painting,” IEICE Transactions on Information
and Systems, vol. E96.D, no. 5, pp. 1134–1144, 2013.

[10] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Playing atari with
deep reinforcement learning,” 2013, https://arxiv.org/abs/
1312.5602.

[11] J. Clifton and E. Laber, “Q-learning: theory and applications,”
Annual Review of Statistics and Its Application, vol. 7, no. 1,
pp. 279–301, 2020.

[12] J. Barceló, H. Grzybowska, and S. Pardo, “Vehicle routing and
scheduling models, simulation and city logistics,” in Dynamic
Fleet Management, pp. 163–195, Springer, 2007.

[13] R. Bellman, “A Markovian decision process,” Indiana Univer-
sity Mathematics Journal, vol. 6, no. 4, pp. 679–684, 1957.

[14] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “NCTUGR 2.0:
multithreaded collision-aware global routing with bounded-
length maze routing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 32, no. 5,
pp. 709–722, 2013.

[15] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 30, no. 1, 2016.

[16] H. Liao, W. Zhang, X. Dong, B. Poczos, K. Shimada, and L. B.
Kara, “A deep reinforcement learning approach for global
routing,” Journal of Mechanical Design, vol. 142, no. 6, article
061701, 2020.

[17] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, Handbook of
Algorithms for Physical Design Automation, CRC Press, 2008.

[18] Z. Cao, T. T. Jing, Y. H. Jinjun Xiong, Z. Feng, L. He, and
X.-L. Hong, “Fashion: a fast and accurate solution to global
routing problem,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 27, no. 4,
pp. 726–737, 2008.

[19] M. D. Moffitt, “MaizeRouter: engineering an effective global
router,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 27, no. 11, pp. 2017–2026,
2008.

[20] K.-R. Dai, W.-H. Liu, and Y.-L. Li, “NCTU-GR: efficient sim-
ulated evolution-based rerouting and congestion-relaxed layer
assignment on 3-D global routing,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 20, no. 3, pp. 459–
472, 2012.

[21] G. Liu, X. Zhang, W. Guo et al., “Timing-aware layer assign-
ment for advanced process technologies considering via
pillars,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 41, no. 6, pp. 1957–1970, 2022.

[22] C. Albrecht, “Global routing by new approximation algo-
rithms for multicommodity flow,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 20, no. 5, pp. 622–632, 2001.

[23] T.-H. Wu, A. Davoodi, and J. T. Linderoth, “GRIP: scalable 3D
global routing using integer programming,” in Proceedings of
the 46th Annual Design Automation Conference, pp. 320–
325, San Francisco, California, 2009.

[24] C. Chu and Y.-C. Wong, “FLUTE: fast lookup table based rec-
tilinear Steiner minimal tree algorithm for VLSI design,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 1, pp. 70–83, 2008.

[25] S. Ghosh, S. Nath, R. Biswas, P. Venkateswaran, J. K. Sing, and
S. K. Sarkar, “PSO variants and its comparison with Firefly
algorithm in solving VLSI global routing problem,” in 2018
IEEE Electron Devices Kolkata Conference (EDKCON),
pp. 513–518, Kolkata, India, 2018.

[26] G. Liu, X. Huang, W. Guo, Y. Niu, and G. Chen, “Multilayer
obstacle-avoiding X-architecture Steiner minimal tree con-
struction based on particle swarm optimization,” IEEE Trans-
actions on Cybernetics, vol. 45, no. 5, pp. 1003–1016, 2015.

[27] X. Chen, G. Liu, N. Xiong, S. Yaru, and G. Chen, “A survey of
swarm intelligence techniques in VLSI routing problems,”
IEEE Access, vol. 8, pp. 26266–26292, 2020.

[28] G. Liu, W. Zhu, X. Saijuan, Z. Zhuang, Y.-C. Chen, and
G. Chen, “Efficient VLSI routing algorithm employing novel
discrete PSO and multi-stage transformation,” Journal of
Ambient Intelligence and Humanized Computing, 2020.

[29] G. Liu, L. Yang, X. Saijuan, Z. Li, Y.-C. Chen, and C.-H. Chen,
“X-architecture Steiner minimal tree algorithm based on
multi-strategy optimization discrete differential evolution,”
PeerJ Computer Science, vol. 7, article e473, 2021.

[30] G. Liu, X. Chen, R. Zhou, X. Saijuan, Y.-C. Chen, and G. Chen,
“Social learning discrete particle swarm optimization based
two-stage X-routing for IC design under Intelligent Edge
Computing architecture,” Applied Soft Computing, vol. 104,
article 107215, 2021.

[31] M. Gester, D. Müller, T. Nieberg, C. Panten, C. Schulte, and
J. Vygen, “BonnRoute,”ACMTransactions on Design Automa-
tion of Electronic Systems, vol. 18, no. 2, pp. 1–24, 2013.

[32] G. Liu, Z. Chen, Z. Zhuang, W. Guo, and G. Chen, “A unified
algorithm based on HTS and self-adapting PSO for the con-
struction of octagonal and rectilinear SMT,” Soft Computing,
vol. 24, no. 6, pp. 3943–3961, 2020.

[33] G. Liu, Y. Zhu, X. Saijuan, Y.-C. Chen, and H. Tang, “PSO-
based Power-Driven X-Routing algorithm in semiconductor
design for predictive intelligence of IoT applications,” Applied
Soft Computing, vol. 114, article 108114, 2022.

[34] Z. Zhang, “Improved Adam optimizer for deep neural net-
works,” in 2018 IEEE/ACM 26th International Symposium on
Quality of Service (IWQoS), pp. 1-2, Banff, AB, Canada, 2018.

16 Wireless Communications and Mobile Computing


	An Enhanced Deep Reinforcement Learning-Based Global Router for VLSI Design
	1. Introduction
	2. Related Work
	3. Preliminaries
	3.1. Global Routing
	3.2. Deep Reinforcement Learning.

	4. DDQN-Based Global Router
	4.1. Decomposition of Multipin Nets
	4.2. Encoding
	4.3. Initialization of Experience Replay Buffer
	4.4. DDQN Implement
	4.4.1. Reward Design
	4.4.2. Neural Network Architecture
	4.4.3. Episode
	4.4.4. Max Step
	4.4.5. Loss Function

	4.5. Concurrent Training
	4.6. Algorithm Flow Chart and Complexity Analysis
	4.6.1. Decomposition of Multipin Nets
	4.6.2. Encoding
	4.6.3. Initialization of the Experience Replay Buffer
	4.6.4. DDQN Implement
	4.6.5. Complexity of DDQN-Based Global Router


	5. Experimental Results
	5.1. Development Environment
	5.2. Wire Length and Convergence Comparisons between DQN-Based and DDQN-Based Global Router
	5.2.1. The Comparative Experiment of Wire Length
	5.2.2. The Comparative Experiment of Convergence

	5.3. Verification of Action Elimination Method
	5.4. Routability Comparison between Serial Training and Concurrent Training
	5.5. Routing Result Comparison of the Two Reward Functions
	5.6. Test of Conjoint Optimization of DDQN-Based Global Router

	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments



