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Key technologies in 5G and future 6G, such as millimeter wave massive multiple-input multiple-output (MIMO), relies accurate
channel state information (CSI). However, when the number of base station (BS) antenna increases or the number of users is large,
it is rather resource-consuming to obtain the CSI. Channel knowledge map (CKM) is an emerging environment-aware wireless
communication technology, which stores the physical coordinates of BS and reference locations together with the corresponding
channel path information. This makes it possible to obtain CSI with light or even without pilots, which can significantly reduce the
overhead of channel estimation and improve system performance, especially suitable for quasi-static wireless environments with
relatively stable channels and communication systems using millimeter waves, terahertz waves, visible light, and so on. The main
challenge for CKM is how to construct an accurate CKM based on finite measurement data points at limited reference locations. In
this work, we proposed a novel CKM construction method based on path matching and environmental partitioning (PMEP-CC) to
address the above issues. Specifically, we first sort the propagation paths between reference locations, map them to a high-
dimensional space to establish the path correlation coefficient between two reference locations. Then, the communication region
are divided into different subregions based on its spatial correlation. Finally, the path information at locations where no measure-
ments are available are estimated based on the known path information within the subregion to construct CKM. Numerical results
are provided to show the performance of the proposed method over related studies.

1. Introduction

With the rapid development of wireless communication tech-
nology, new technologies such as massive multiple-input
multiple-output (MIMO), millimeter wave and terahertz com-
munication are emerging, which greatly improve the system
spectrum efficiency and energy efficiency, and become poten-
tial solutions for the future 6G systems [1]. The excellent per-
formance of the technologies such as millimeter wave massive
MIMO relies on an accurate channel state information (CSI).
Therefore, to obtain an accurate CSI is extremely important,
which is mainly acquired through channel estimation. Massive
MIMO systems which employs a large number of antennas and
serves many users simultaneously results in high-dimensional

channel matrix and thus the training overhead increases sig-
nificantly. Therefore, efficient and accurate acquisition of CSI
in the future wireless communication systems is very challeng-
ing. Channel knowledge map (CKM) is an emerging technol-
ogy based on the environmental awareness [2], which retrieves
accurate CSI (e.g., AoA/AOD, delay, gain, and number of
paths) between transceivers based on their precise locations
stored in a database. CKM-enabled environment-aware com-
munication techniques can help to further improve the system
performance by using schemes with few or even no pilots [2].

As evidenced by many applications in the recent years,
mobile communication systems estimate the channel CSI
mainly by transmitting pilots [3]. Both time division duplex-
ing (TDD) and frequency division duplexing (FDD)
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communication systems use the pilot to estimate the channel.
At the expense of spectrum resources, the channel estimation
is aided by the insertion of known symbols (pilots) in a pre-
scribed arrangement in the transmitter’s signal, and the
received data symbols are recovered and corrected by the
change in state of the frequency response in the channel at
the receiver’s end. In TDD systems, the uplink pilot is usually
sent by the user equipment and the channel is estimated at the
base station (BS) side, using the reciprocal characteristics of
the uplink and downlink to obtain the CSI of the downlink.
The length of the orthogonal pilot sequence is proportional to
the number of users, and the pilot overhead becomes signifi-
cantly larger with the number of users [4, 5]. Existing channel
estimation schemes include time-domain MMSE methods
based on subspace tracking [6], block-type pilot LS and
MMSE methods [7], and compressive sensing methods
[8, 9]. In the downlink of an FDD system, BS sends pilot
and user equipment estimates the CSI of the downlink and
feeds it back to the BS. The length of the orthogonal pilot
sequence is usually proportional to the number of antennas
at the BS, and the increase in the number of antennas gen-
erates a huge system overhead [10–12]. Existing channel esti-
mation schemes include FDD-based compressive sensing
methods [13] and robust super-resolution methods [14].
Although the above methods can accurately estimate the chan-
nel, as the antenna array size or the number of users becomes
large, the channel dimension increases, the computational com-
plexity grows geometrically, and the pilot overhead increases
significantly, which becomes a bottleneck limiting the perfor-
mance of millimeter wave massive MIMO [15] systems. The
emerging CKM technology is expected to significantly reduce
the channel estimation overhead and further improve the per-
formance of technologies such as millimeter wave massive
MIMO by leveraging information in the wireless environment
that has been overlooked in the traditional communication sys-
tem designs.

Some specific instances of CKM include channel gain
map (CGM) [16], also known as radio environment map
(REM), and channel path Map (CPM) [17], among others.
CKM-enabled communications have recently been studied
in the prediction of receive signal strength (RSS), the con-
struction of fine radio maps, and thus improving the perfor-
mance of communication systems [18–20].

Existing work mainly foucse on predicting RSS. In [21],
the access point (AP) was used to divide the sensors into
appropriately sized estimation groups based on the semivar-
iogram of the measurements, and Ordinary Kriging interpo-
lation then performed within the groups to estimate the
signal strength. In the study of Sato et al. [22, 23], regression
analysis was used over space and frequency domains to
establish the path loss model at different frequencies. After
achieving shadowing value interpolation at the target fre-
quency, shadowing factors in the target band are spatially
interpolated via Ordinary Kriging. These research methods
in the above literature all rely on a path loss model, and
models are built based on the probability distributions of
channel parameters (e.g., small-scale fading, shadow fading,
and AoA/AoD) and the scattering environment, which only

consider the relative positions of transmitters and receivers,
without considering current physical knowledge such as the
material of obstacles between nodes and the distribution in
the actual communication scenario. In addition, when fewer
parameters are used to represent the channel, models are
difficult to cover all features of the channel, and the estima-
tion accuracy cannot be guaranteed. However, when there
are more parameters, the system overhead is larger [24].
Therefore, the model-based channel is suitable for simple
propagation environments, and its performance decreases
sharply when the propagation environment is complex.

To overcome the above drawbacks, some scholars pro-
pose machine learning-based approaches to explore the
information hidden between massive data using its powerful
data mining capability [25] to complete the prediction of the
channels. Li et al. [26] use a spatial–temporal reconstruction
network to extract spatial and temporal low-resolution fea-
tures, and then extracted high-level features were input to the
network to complete high-precision map reconstruction. In
[27], the power spectral density map estimation task is con-
verted into an image reconstruction task and designs a map
reconstruction framework based on a self-encoder and a full-
convolutional network, which learns radio propagation char-
acteristics from training data to reconstruct power spectral
density map. In [28], the authors proposed a hybrid model
and data-driven spectrum cartography (SC) framework that
combines a radio map disaggregation model with DNN-
based spatial power propagation, using DNN to represent
the most complex part in the radio map model to alleviate
the training and generalization difficulties. These methods do
not use specifics to estimate RSS and have better prediction
results in complex scattering environments. In [29], the
authors proposed a radio-map learning and reconstruction
approach that both revealed topology-induced structure to
establish joint clustering and regression problems using max-
imum likelihood. The space is divided into several regions
according to the distribution of obstacles, and signal strength
models with the different values of parameters are built in the
different regions. The above work only studies the prediction
of RSS, and cannot reconstruct the channel matrix.

In CPM research, researchers aim to predict the channel
path information for all remaining locations in the coverage
area, such as the number of significant paths and their
phases, AoA/AoD, and so on [17]. Combining the UE loca-
tion and the essential parameters for the MIMO channel
information stored by CPM, the MIMO channel matrix
can be reconstructed for beam alignment without relying
on conventional channel training. Similarly, beam index
map (BIM) aims to learn the best beam pairs for all remain-
ing locations within the transmitter coverage [30]. Com-
pared to the CPM, although BIM does not take into
account the reconstructed channel and therefore the compu-
tational overhead is light, the application scenario is more
limited. Research work in this area is still in its infancy.

Due to the fact that the above-mentioned related work all
use path loss models, current works do not consider the prior
knowledge of the environment, which leads to mismatch
problem between the model and the environment. Therefore,
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the RSS estimation results are not always reliable. Methods
based on the machine learning show better estimation results
without specific pathloss models. However, only the channel
gain is estimated in these schemes, which is sufficient for
MIMO precoding or beamforming, etc. CKM contains
environmentally relevant path information and is expected
to enable highly accurate channel reconstruction to solve the
above problems. Most existing research shows that channels
exhibit sparse characteristics and often consist of a limited
number of multipaths in high-frequency communication
scenarios (e.g., millimeter wave, terahertz). In order to recon-
struct CKM, key path parameters such as the number of
significant paths and their phases, need to be preserved.
There are two major challenges in the construction of
CKM. On the one hand, there is no specific model for
CKM, so they cannot be constructed directly. On the other
hand, the radio propagation is affected by environment,
resulting in the different degrees of variation between multi-
ple path parameters such as their phase, time delay, and gain
at different locations, so it is impossible to arbitrarily select
path to construct a CKM.

In order to solve the above issues, we proposed a novel
CKM construction method based on path matching and
environmental partitioning that does not rely on a specific
pathloss model. The location of the BS is assumed to be fixed,
and the majority of obstacles within its service area also has a
fixed distribution. On the one hand, for a given reference
location, although the variation in channel characteristics
is perturbed by small-scale fading, the channel can be con-
sidered quasi-static (QS) because the obstacle distribution
usually does not obviously change within a short period of
time and the path information changes slowly [31]. On the
other hand, the QS-CSI varies greatly at the different loca-
tions. The communication area is divided into subregions
based on spatial correlation of the wireless channel. Unlike
existing works which only focus on prediction of a channel
single parameter, the proposed scheme takes into account
multiple parameters such as AoA/AoD and delay, allowing
the reconstruction of the channel matrix. The main contri-
butions to this work are summarized as follows:

(i) The reference positions where CSI is assumed to be
known are acquired through simulation or online
measurements, etc., on the basis of which a model
for CKM construction was developed.

(ii) A path-matching method based on high-dimensional
mapping is proposed for the variability of parameters
such as the number of paths, the angle, and path gain at
different locations. After mapping QS-CSI to high-
dimensional space with a kernel function, it then
matches strongly correlated paths with the differences
in path information, and calculates the spatial correla-
tion of channels at different locations.

(iii) The coverage area is divided into subregions according
to the channel correlation of different locations, and
the channels within each subregion have strong corre-
lation characteristics, while the channels between dif-
ferent subregions differ significantly. The QS-CSI of

the location of interest is predicted using the inverse
distance weighted (IDW) interpolation method in
each subregion.

The remainder of this paper is organized as follows. The
model of the CKM and the problem challenges are intro-
duced in Section 2. In Section 3, we proposed a CKM con-
struction method based on path matching and environment
partitioning. In Section 4, the numerical evaluation results
and analysis are reported. The conclusions are drawn in
Section 5.

2. System Model and Problem Formulation

The CSI from the BS to the reference location often relies on
sending pilot signals performing the channel estimation.
This inevitably introduces signaling overhead, which can
have a significant impact on system performance, especially
when the number of antennas or users is large [32]. The CSI
acquired in traditional communication is discarded after it is
used and thus it is not fully utilized. And in the actual com-
munication scenarios, the distribution of major obstacles
does not change for a comparatively long time (e.g., the
positions of obstacles like buildings and trees are fixed).
The radio propagation environment is stable, and the CSI
is almost unchanged in a short time. We proposes to mine
historical CSI to estimate slow-varying CSI and construct a
mapping relationship between receiver location, i.e., CKM,
which can reduce or avoid signaling overhead. As shown in
Figure 1, we use the CSI at the locations where is known to
estimate the CSI at the remaining locations.

Denote the interested area as S. Let CI lTX;ð lRXÞ denote
the CSI between the BS at lTX ¼ xTX; yTX; zTX½ �T and the ref-
erence location at lRX ¼ xRX; yRX; zRX½ �T where lTX; lRX 2S.
CI contains the number of valid paths and the slowly varying
channel information. Existing studies have shown that when
the wireless environment changes slowly, the statistical prop-
erties of small-scale fading of wireless channels in high-
frequency bands do not change significantly [31], so the
QS-CSI does not change significantly in a short period of time
and shows strong spatial correlation.When the user’s position
changes, the high-speed movement causes the wireless chan-
nel highly time varying but it can still be considered a QS
channel if the obstacles remains unchanged. For example, the
position of a high-speed train changes rapidly, but its travel-
ing route is fixed, and the position of the obstacles around the

Base station (BS)
Reference locations (CSI is known)

Remaining locations (CSI is unknown)

CSI

Predict Building CKM

CSI

FIGURE 1: An illustration of the CKM construction process.
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route remains unchanged in general. So, it can be considered
that the user is moving at high speed in a large QS region.
CKM can be directly used for channel reconstruction for
services that has low-CSI requirement, or be used with the
assistance of a few pilots to provide high-quality CSI for high-
data rate.

The expression of CI2RNp×6 is given by

CI lTX; lRXð Þ ¼

ϕD
1 θD1 ϕA

1 θA1 g1 τ1

ϕD
2 θD2 ϕA

2 θA2 g2 τ2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ϕD
Np

θDNp
ϕA
Np

θANp
θANp

τNp

266664
377775;

ð1Þ

where each row corresponds to a path, and Np denotes the
number of valid paths, each containing six parameters as
explained below. ϕD

i ; θ
D
i 2 0;½ 2πÞ represent the elevation and

horizontal AoD of the i ið ¼ 1;⋯;NpÞ-th path, respectively.
ϕA
i ; θ

A
i 2 0;½ 2πÞ represent the elevation and horizontal AoA

of the path, respectively. gi and τi are the path gain and time
delay of the i-th path, respectively.

To construct the CKM, the reference location CSI can be
acquired through simulation and/or measurements [33]. The
CSI data acquisition is divided into two main parts. One is
using automatic ground vehicles to measure the CSI of some
locations around the building. The other one is to obtain the
CSI of some locations that cannot be arranged due to the
geographic environment by simulation. The specific opera-
tion of simulation method is to obtain all geographic infor-
mation of the communication scenarios (e.g., the location
and the height of buildings and trees, etc.), and to construct
a 3D map. We use 3D map and Ray Trace simulation to
obtain the CSI at the locations that cannot be measured in
the actual area.

Consider the set of data D¼ ξ ið Þ ij ¼È
1;…;Mg, where

ξ ið Þ≜ l ið ÞTX;
n

l ið ÞRX;CI
ið Þg; i¼ 1;…;M. The CKM can be seen as

a mapping that associates the BS and location coordinates
with the corresponding CI, which can be expressed as fol-
lows:

M l ið ÞTX; l
ið Þ
RX

� �
→

ϕiD
1 θiD1 ϕiA

1 θiA1 gi
1 τi1

ϕiD
2 θiD2 ϕiA

2 θiA2 gi
2 τi2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ϕiD
Np

θiDNp
ϕiA
Np

θiANp
gi
Np

τiNp

266664
377775;

ð2Þ

the mapping is in factR3 ×R3 → RNp×6. Assuming the CSI at
MRF reference locations (denoted as DRF) are known and are
used to predict the CSI at the MRE remaining locations
(denoted as DRE) in S. Assess the precision of QS-CSI esti-
mation at MRE through the normalized mean squared error
(NMSE), which measures the difference between estimated
and actual values and is given by

NMSE ≜
1
M

∑
M

j¼1

cCI jð Þ
− CI

jð Þ
 2

F

CI jð Þ 2
F

¼ 1
M

∑
M

j¼1

M l jð Þ
TX; l

jð Þ
RX

� �
− CI jð Þ

 2
F

CI jð Þ 2
F

; l jð ÞTX; l
jð Þ
RX;CI

jð Þ
n o

2 DRE;

ð3Þ

where cCI jð Þ represents the estimated CSI matrix at location j.
⋅k k2F denotes the number of Frobenius norm. M represents

the number of elements in DRE. The CKM construction
problem can be expressed as an optimization problem. The
estimated CKM is estimated most accurately when the
NMSE takes the smallest value, translating the above prob-
lem into

M¼ argmin
M NMSE

¼ argmin
M

 

1
M

∑
M

j¼1

M l jð Þ
TX; l

jð Þ
RX

� �
− CI jð Þ

 2
F

CI jð Þ 2
F

:
ð4Þ

The radio propagation is impacted by obstacle distribu-
tion and propagation distance, so parameters such as path
loss and shadow fading may vary significantly between dif-
ferent subregions, making it difficult to model and analyze in

a uniform manner. In addition, the M l jð ÞTX;
�

l jð ÞRXÞ has no ana-

lytical model, and conventional methods cannot provide the
best solution to the optimization problem (4).

To address these issues, we proposes to leverage spatial
correlations among CSI data at nearby locations, and then
partition the physical space and complete the construction of
CKM within each subregion. The difficulties lie in the fol-
lowing aspects:

(i) The presence of multiple paths in CI implies that the
order of these paths impact the correlation of CSI at
different locations. Take a¼ −½ 1 1�, b¼ 1−½ 1�, and
c¼ −½ 1 1� for example. b and c have the same ele-
ments, but in the different order, which results in a
different correlation coefficients with ρab ¼ 0; ρac ¼ffiffiffi
2

p
=2.

(ii) Since the receivers are situated in the different physi-
cal locations, the radio propagation environment
changes significantly due to different propagation
distance or obstacle distribution. Therefore, the
QS-CSI at different region may be significantly dif-
ferent. Using all data in DRF to predict the CSI at a
specific remaining location may lead to large predic-
tion error and the computational complexity is very
high. This can be alleviated by selecting effective data
at locations in DRF that experience similar propaga-
tion environment. However, dividing S into subre-
gions that shows similar propagation properties is no
easy task.
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To solve the above difficulties, we proposed a path
matching and environment partitioning-based CKM con-
struction (PMEP-CC) scheme, which will be detailed in the
next section.

3. Path Matching and Environment
Partitioning-Based CKM
Construction Scheme

In this section, we introduce the proposed PMEP-CC
scheme. First, a kernel function that maps path parameters
into higher dimension is introduced to increase the differen-
tiation between path parameters. Then an affinity propaga-
tion- (AP-) based partitioning algorithm is proposed to
divide the coverage area into different subregions by utilizing
spatial correlation of CSI at different locations. Finally, the
CSI of the remaining locations in S is predicted using data
from DRF within the same subregion.

3.1. Path Matching Based on High-Dimensional Mapping.
Unlike the previous studies on radio map (RAM) that solely
consider channel gain, the proposed CKM involves multiple
parameters for each path such as AoA/AoD, channel gain,
and so on, i.e., CI for different locations. The construction of
a complete CKM requires paths with similar parameters
around the reference location to predict the multiple paths
of the remaining location. This section proposes a path-
matching solution by mapping CSI to a high-dimensional
space. The matrix CI includes multidimensional data, mak-
ing it challenging to determine the correlation between
matrices accurately utilizing conventional methods. Conse-
quently, the proposed approach measures the gap between
the corresponding path parameters in the matrix CI at vari-
ous locations when the path order changes in the multiple
dimensions to decide the correlation and path matching
between the matrices CI when the changes in gap measures
are minimal. Given that the approximation of AoA/AoD in
high-frequency band millimeter wave follows the normal
distribution, we introduces the Gaussian Kernel (GK) as a
high-dimensional mapping tool.

Consider the radio propagation path environment
between transmitter A, B, and C in Figure 2, which includes
both line-of-sight (LOS) and non-line-of-sight (NLOS)
paths. Assuming path information is known at both loca-
tions B and C, which are used to estimate the propagation
path information at location A. As depicted in Figure 2, each
of the three points A, B, and C possess three propagation
paths, labeled as a1;ð a2; a3Þ, b1;ð b2; b3Þ, and c1;ð c2; c3Þ,
respectively. The path information of LOS path a1 and b1;
c1 are similar and show high correlation, which is expected
to estimate a1 information accurately. However, if b2 and c2
are utilized, the estimated a1 obtained is bound to have a
large error. In order to construct the CKM, it is imperative
to match the paths that have a strong correlation and esti-
mate the path information of the remaining locations.

Due to CI contains the path parameters that have differ-
ent orders of magnitude and units, such as a path gain of
−100 dB and a delay in 10−7 s, which cannot be compared
directly. Therefore, the unit needs to be removed and the
data is normalized as follows:

y ¼ Ωmax −Ωminð Þ × x −min xð Þ½ �
max xð Þ −min xð Þ þΩmin; ð5Þ

where y and x represents the normalized value and the origi-
nal value, respectively. Ωmin;Ωmax represent the minimum
and maximum values of the normalized range, respectively.
In Equation (5), the normalization are AoA/AoD, time delay
and path gain, and so on.

After normalization, the correlation coefficients for differ-
ent positions CI are calculated in the subsequent manner.
First, the order of the multiple paths at each location is deter-
mined to accomplish path matching. Fix the path order in the
data samples at location B and vectorize CIB as follows:

fCIB ¼ vec CITBð Þ ¼ wT
1 wT

2 ⋯ wT
Np

h i
T
; ð6Þ

where wi ¼ ϕD
i θDi ϕA

i θAi gi τi½ �T ið ¼ 1…NpÞ repre-

sents the CSI of the i-th path, fCIB represents the order of

Line-of-sight
Non-line-of-sight

Estimated location

c2
b2

b1

b3

c1

c3
A

B
C

ðaÞ

Line-of-sight
Non-line-of-sight

Estimated location

a2

a3

a1

A

ðbÞ
FIGURE 2: Path distribution matching map. (a) Paths information at known locations B and C. (b) Path matching map for location A.
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paths at fixed position B. Then, the path order of the CI at
location C can be modified and vectorized as follows:

fCICj ¼ vec ΠjCITC
À Á

; ð7Þ

where Πj 2RNP×NP jð ¼ 1; ⋯; NP × NP − 1½ �=2Þ represents
the permutation matrix. fCICj represents the order of different
paths at position C.

Next, the correlation coefficient between the two loca-
tions CI was determined when calculating the change in path
order at location C. To accurately utilize the change in infor-
mation in each dimension in CI, a Gaussian kernel function
[34] was used to map the path information to a higher
dimensional space to determine the matrix correlation at
locations B and C, which is expressed as follows:

ρ CIB;CICð Þ ≜ e−
eCIB−eCIC

j

 2

2σ2

∝ ∑
þ1

n¼0

1
σ2

fCIB� �
TfCIC� �

n
; j¼ 1; ⋯; NP × NP − 1½ �=2 

ð8Þ

where ρ 0<ρ<1ð Þ takes the maximum value. when ρ CIB;ð
CICÞ is smallest, it matches the path with the strongest cor-
relation at B; C. The larger the value of σ indicates the influ-
ence of the interaction between samples, the smoother the
change of ρ and the larger the range of data sample effects,
affecting more data samples. When σ is smaller, the range of
effects is smaller, ρ the change is steeper and the phenome-
non of overfitting is easy to occur, and the size of its value
seriously affects the correlation between data samples. The
optimal value of σ can be found by either robust search or
solving an optimization problem which is formulated based
on the data distribution [35].

3.2. Environmental Partitioning Based on AP. Due to the
difference between the propagation environments, the chan-
nel parameters differ significantly between the two distant
locations. Specifically, NLOS paths are affected by reflection,
refraction, and diffraction, leading to variations in the path
gain, delay, and AoA in different propagation environments.
Similarly, LOS paths are mainly affected by the propagation

distance, leading to differences in path gain and delay at different
locations. Therefore, if the CI of the remaining locations is
inferred directly using CSI data without considering environ-
ment, it will lead to large errors. To address this problem, we
proposes an environmental partitioning method based on AP,
using the correlation coefficients of CI between different loca-
tions to divide the whole area into multiple subregions. Then,
using the sample data to estimate the CI of locations that are
interested within the same subregion, which can reduce the
computational complexity and improve the accuracy.

After reviewing the distribution of obstacles and recei-
vers shown in Figure 3(a), we observe that the propagation
environment at locations B and C is more similar than that of
location A compared to the environments at locations D and
E. Additionally, there are also notable differences between
the propagation environments at locations D and E. In
Figure 3(b), we divide the locations A; B; C; D; E into dis-
tinct subregions based on the propagation environment. The
path parameters such as AoA/AoD, time delay and path gain

B

C
D

E

A

Line-of-sight
Non-line-of-sight

Estimated locations

ðaÞ

B

C
D

A

E

Line-of-sight
Non-line-of-sight

Estimated locations

ðbÞ
FIGURE 3: An illustration of environment partitioning based on propagation path correlations. (a) Reference locations distribution. (b) Spatial
division.
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of the signals within the same subregion are similar and
highly correlated, and within different subregions, there are
large variations in one or more path parameters, so the cor-
relation is weak.

The correlation of the CSI matrix between receivers is
obtained through high-dimensional mapping, with ρ CIB;ð
CICÞ rewritten as ρ CIi;ð CIjÞ for universality. The environ-
ment partitioning should consider both the distance and the
obstacle distribution. Therefore, we propose the following
modified correlation criterion ρ0 CIi;ð CIjÞ, for locations i; j
in S, ρ0 i;ð jÞ<0 as follows:

ρ0 i; jð Þ ≜ − α1ρ CIi;CIj
À Á

− α2
1

d i; jð Þ ; i ≠ j; ð9Þ

where

d i; jð Þ ¼ l ið ÞRX − l jð ÞRX
 

2
; ð10Þ

denotes the Euclidean distance between receivers after nor-
malization. In Equation (9), α1 þ α2 ¼ 1 represents the
weighs for channel correlation and Euclidean distance.

In this work, we use AP-based iteration algorithm for
environment division to divide S into different subregions.
First, r i;ð jÞ is initialized as follows:

r i; jð Þ ¼ ρ0 i; jð Þ −max
k≠j

  a i; kð Þ þ r i; kð Þf g: ð11Þ

Then, a i;ð jÞ is updated iteratively as follows:

a i; jð Þ ¼
min 0; r j; jð Þ þ ∑

k≠i;j
max 0; r k; jð Þð Þ

( )
; i ≠ j

∑
k≠j

max 0; r k; jð Þð Þ; i¼ j

8>>><>>>: ;

ð12Þ

where a i;ð jÞ and r i;ð jÞ iterate over each other until the
appropriate subregions are selected. r i;ð jÞ indicates the suit-
ability of dividing the j-th reference location and the i-th
reference location into the same subregion, a i;ð jÞ represents
the degree to which the j-th reference location and i-th ref-
erence location are suitable for different subregions. Initialize
r i;ð jÞ¼ 0 and a i;ð jÞ¼ 0.

3.3. CKM Construction Based on Inverse Distance
Interpolation. Within the same subregion, the radio propa-
gation environment is similar and there is strong correlation
between the CI at different locations. Meanwhile, the degree
of correlation heavily depends on the distance between these
locations. Consequently, we proposes a CI2DRF to estimate
CI2DRE method based on inverse distance interpolation to
facilitate the construction of the CKM.

Observing the specified area in Figure 4, the obstacle
distribution is fixed and does not change over a long period
of time, and the radio propagation environment changes

gradually. The QS-CSI matrices CIB;CIC are known at B
and C, and A is an arbitrary point within the subregion,
using sample points B and C to estimate CSI at A. In addi-
tion, a positive correlation between path information simi-
larity and position was observed when there were no
obstacles between receivers. Therefore, using the distance
from the point to be estimated to that of the known point
as a weight to estimate the CSI at the point to be estimated,
the CI at A is estimated as follows:

CIA ¼ λ1CIB þ λ2CIC; ð13Þ

where λ1 ¼ dAC
dACþdAB

, λ2 ¼ dAB
dACþdAB

, and dAB ¼ lARX −k lBRXk;
dAC ¼ lARX −k lCRXk represents the Euclidean distances from
point A to B and C, respectively.

4. Numerical Results and Analysis

In this section, the performance of the proposed PMEP-CC
is evaluated through simulation. NMSE is chosen as the met-
ric to measure the accuracy of CKM. As shown in Figure 5,
an area range of 500× 500 m is considered. We focus on the
construction of the downlink CKM for the region shown in
the red box of size 240× 240 m, where the BS is located at the
origin with a height of 20m. The dense distribution of obsta-
cles in the area leads to a large number of NLOS, which poses
a strong challenge for building a full domain CKM and helps
to demonstrate the performance of the proposed solution. In
the simulation, the area is divided into equally spaced grids
with a spacing of 6m. Then, the Ray Tracing method and
Matlab simulation are used to generate the downlink CSI, as
in Equation (1), when the receiver is located at the grid point.

Due to no existing related novel work, to compare the
proposed PMEP-CC performance, we use K-Means and geo-
metric methods as benchmarks. The specific simulation

B

C

A

Line-of-sight
Non-line-of-sight

Estimated locations

FIGURE 4: Schematic diagram of QS-CSI estimation.
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parameters for the and AP environment partitioning algo-
rithms. The detailed simulation parameters of high-
dimensional mapping, K-Means and geometric partitioning
are shown in Table 1.

Figure 6 presents the results of the partitioning using
geometric partitioning, K-Means, and the proposed AP algo-
rithm, the blank space indicates that the grid point is a blind
coverage area where the signal cannot be effectively received
due to severe attenuation. Figures 6(a) and 6(b) show the
partitioning effect of the K-Means algorithm using the origi-
nal data and preprocessed (e.g., mapping) data, respectively.
It can be seen from the figures, although the majority of
adjacent grid points is separated into the same subregion,
the partitioning results do not accurately reflect the actual
geographical features and present confounding colors in cer-
tain locations. This is primarily due to limitations of the
K-Means algorithm, which can only perform simple linear
partitioning and struggles to divide partitions into arbitrary
shapes. Meanwhile, the CI contains multidimensional infor-
mation that cannot be directly compared without reflecting
changes to the data. Also, increasing the number of partitions
does not improve the K-Means algorithm’s performance, as
seen in the simulation results.

Figures 6(c) and 6(d) show the partitioning results
obtained by the proposed AP algorithm using original and
preprocessed data, respectively. In Figure 6(c), spatial grid
points are divided into three regions that roughly correspond
to the geographical features, but some interlocking regions
with wide ranges remain. In contrast, by using preprocessed
data, geographical features are better represented, clear
boundaries between subregions are established, and subre-
gions’ ranges are smaller—thereby enhancing channel esti-
mation and reducing computational complexity.

Figure 6(e) illustrates the division of the communication
scene into geometric regions of similar size, without regard
to the surrounding environment, as a baseline for compari-
son in subsequent channel reconstruction. Within the cover-
age area, the transmitter location is fixed and the distribution
of obstacles such as buildings and trees remains static for a
period of time, so the radio propagation process is largely
unaffected by the obstacles and distance, and therefore the
shape and extent of the subareas divided according to chan-
nel correlation also remain stable. Therefore, the communi-
cation scene can be divided into uniformly sized grids, and
by simulating the channel information at all grid points, the
division of the communication scene area can be completed,
and the CKM can be updated after more significant changes
in the environment.

In order to test the performance of the interpolation
method for constructing the CKM within the partitioned
subregions of the AP environment, after matching the path
order between grid points proposed, the data at all grid
points obtained from the simulation were divided into two
parts: the known sample dataset and the estimated predic-
tion dataset. Using the algorithm proposed, the CI of the
remaining grid point locations is estimated from the known
sample data and the NMSE performance of the algorithm is
analyzed.

Figure 7 presents the CKM construction results for each
grid point in the different partitioning methods. The color
temperature in Figure 7 indicates the magnitude of the error,

240 m

6 m

24
0 

m

BS

FIGURE 5: Illustration of 3D simulation scene and meshing.

TABLE 1: Simulation parameters for communication scenarios.

Simulation parameter Values

Building height 10− 30 m
Number of grid points 41× 41
High-dimensional mapping coefficient (σ) 30
Preset number of partitions for K-Means 12
Number of partitions in geometric
partitioning algorithm

9

Transmitter power 10 dBm
Transmit signal frequency 2:8× 1010Hz
Number of transmitter 1
The accuracy of CKM 6m
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FIGURE 6: Schematic diagram of the partitioning effect and different colors indicate different partitions. (a) K-Means algorithm for partition-
ing the original data; (b) K-Means algorithm for partitioning the data after path matching; (c) AP environment partitioning algorithm for
partitioning the original data; (d) AP environment partitioning algorithm for partitioning the data after path matching; (e) Geometric
partitioning algorithm for partitioning the original data.
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and the range of values on the color scale represents the
range of estimation NMSE. And the location where the color
obviously change indicates that the CSI estimation error is
large, and the color not obvious indicates that the error
change is small. Figures 7(a) and 7(b) show the reconstruc-
tion errors when 20% and 50% of the grid points in S,
respectively. It was observed that the majority of the loca-
tions with small errors, and only a small percentage of errors
being large, mainly in the left part of the diagram. This is due
to the dense distribution of obstacles in this region, multiple
reflections of the signal and large channel variations that are
difficult to estimate. Furthermore, as the number of sampled
grid points increases, the overall estimation performance
improves. Figures 7(c) and 7(d) show the channel recon-
struction results under the K-Means partitioning algorithm
and the geometric partitioning algorithm, respectively. Com-
paring the simulation results of interpolation errors in the
area divided by different partitioning methods in Figure 7(d),

we can see that CSI estimation results under the AP environ-
mental partitioning algorithm are more accurate.

Figure 8 shows the cumulative error distribution for esti-
mating the CSI at the remaining 80% of the grid points under
the different partitioning algorithms, where the CSI at 20% of
the grid points is randomly selected as reference CSI. The
results in Figure 8 show that the errors under the geometric
partitioning algorithm are significantly higher than those
under the AP environmental partitioning algorithm and the
K-Means partitioning algorithm. This indicates the need for
targeted partitioning based on environmental characteristics.
Meanwhile, as can be seen from the figure, the error perfor-
mance under the AP environmental partitioning algorithm
proposed is excellent, with the error less than −40 dB at about
20% of the locations and below −25 dB at about 80% of the
locations, outperforming the K-Means algorithm and the geo-
metric partitioning method. This is because the proposed AP
environment partitioning method compared to the methods
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FIGURE 7: CKM construction error of different partitioning methods using data after path matching. (a) 20% DRF under AP environment
partitioning algorithm; (b) 50% DRF under AP environment partitioning algorithm; (c) 20% DRF under K-Means partitioning algorithm; (d)
20% sampling under geometric partitioning algorithm.
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such as K-Means, it can be more effective to improve estima-
tion accuracy based on the perceived environmental changes.
It should be noted that for obstacle-dense areas, the signals are
reflected several times and all three partitioning methods
show large errors. This is reason that the three curves get
closer between −15 and −10 dB.

Figures 7 and 8 show that the CKM construction method
proposed is able to accurately estimate the CSI of the remaining
locations and meet the communication requirements. There-
fore, we can retrieve and obtain the CSI between the transcei-
vers from the CKM constructed in this paper combined with
the precise locations of the transceivers, which can avoid or
significantly reduce the pilot overhead and greatly reduce the
system computational complexity. The complexity of the algo-
rithm is divided into two main aspects, on the one hand the
partitioning process is done offline with a complexity of
O 6N2

P ×ð M2 þM2 × logMÞ, where NP denotes the number
of valid paths, M represents the number of grid points. The
radio propagation environment is stable, and the partition is
almost unchanged in a long period of time, without secondary
zoning in a short time. On the other hand, the interpolation
process is done online and the complexity of the algorithm is
O 2E × Rþ 6NPð Þ×ð SsubÞ, where R and E denote the number
of reference location and points to be estimated, respectively,
within the subarea, and Ssub is the number of partitions.

We have tried our best to find any relevant literature, but
there is a little work on CKM construction. To the best of our
knowledge, we are the first to propose using CSI to construct
CKM. Among recently published related papers, most works
use empirical signal models or machine learning to estimate
RSS, which are significantly different from our work.

5. Conclusion

In this paper, we have proposed a CKM construction method
based on PMEP-CC to estimate the CSI of the whole domain
using the CSI of reference locations. Without relying on a
specific path loss model, the method matches similar paths
from the CSI and determines the correlation of CSI at differ-
ent locations. Then, the spatial correlation is used to parti-
tion the radio propagation area into subregions and the CSI
at remaining locations are estimated within the each subre-
gion. The CSI of 20% grid points is randomly selected as the
reference information to construct the CKMwith an accuracy
of 6m. In the simulation results, 82% of the grid points to be
estimated haveNMSE under−25 dB. Based on the transceiver
locations and the CKM constructed in this paper, high-
accuracy CSI can be obtained without relying on pilot train-
ing, which in turn supports transmission techniques such as
beamforming and precoding. The proposed method is able to
construct CKM accurately, and the simulation results have
verified the effectiveness of the proposed scheme.
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