
Research Article
Dynamic Task Assignment Framework for Mobile
Crowdsensing with Deep Reinforcement Learning

Yanming Fu ,1 Kangheng Qi ,1 Yuanquan Shi ,2 Yuming Shen ,1 Liqiang Xu ,1

and Xian Zhang 1

1School of Computer Electronics and Information, Guangxi University, Nanning 530004, China
2School of Computer and Artificial Intelligence, Huaihua University, Huaihua 418099, China

Correspondence should be addressed to Kangheng Qi; qikangheng@qq.com

Received 19 December 2022; Revised 8 May 2023; Accepted 12 May 2023; Published 29 May 2023

Academic Editor: Xianfu Chen

Copyright © 2023 Yanming Fu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Task assignment is a key issue in mobile crowdsensing (MCS). Previous task assignment methods were mainly static offline
assignment. However, the MCS platform needs to process dynamically changing workers and tasks online in the actual
assignment process. Hence, a reliable dynamic assignment strategy is crucial to improving the platform’s efficiency. This paper
proposes an MCS dynamic task assignment framework to solve the task maximization assignment problem with
spatiotemporal properties. First, a single worker is modeled for the Markov decision process, and a deep reinforcement
learning algorithm (DDQN) is used to perform offline learning on historical task data. Then, in the dynamic assignment
process, we consider the impact of current decisions on future decisions. Use the maximum flow model to maximize the
number of tasks completed in each period while maximizing the expected Q value of all workers to achieve the optimal global
assignment. Experiments show that the strategy proposed in this paper has good performance compared with the baseline
strategy under different conditions.

1. Introduction

With the development of technologies such as 5G and
microsensors, MCS has been widely used in different fields,
such as intelligent transportation systems [1], environmental
monitoring [2], and public safety [3]. A typical MCS system
usually consists of a mobile sensing platform, workers, and
task issuers. The task issuer posts tasks on the platform,
and the platform distributes the collected perception tasks
to workers who complete the perception tasks and get paid.
Task assignment is a key issue of MCS. The current research
can be divided into two categories according to the level of
worker participation: the opportunistic task assignment
and the participatory task assignment. In opportunistic task
assignments, workers do not need to change their original
trajectories, and the platform selects workers offline based
on predictions of worker mobility. For example, literature
[4–7] proposes different strategies for selecting a predefined
number of workers to maximize the perceived quality of the

task. In participatory task assignments, workers need to gen-
erate their moving routes according to the tasks assigned by
the platform, which requires candidates to report real-time
locations continuously, and the system selects workers
online. If a worker is selected and assigned to a specific task
location, it will change the original route, move to the spec-
ified location, and receive the corresponding reward. Differ-
ent kinds of literature [8–11] use different reward models for
workers.

In the actual scene, the task assignment of the platform
has the limitation of time and space, showing characteristics
such as dynamic, strong randomness, and multistage. Most
of the original MCS task assignment research has the follow-
ing problems:

(1) In MCS, workers need to collect task data at a precise
location and time, so it is necessary to consider the
impact of worker and task spatiotemporal informa-
tion on platform task assignment

Hindawi
Wireless Communications and Mobile Computing
Volume 2023, Article ID 7093792, 16 pages
https://doi.org/10.1155/2023/7093792

https://orcid.org/0000-0003-3975-3512
https://orcid.org/0000-0002-4966-1016
https://orcid.org/0000-0003-1162-9675
https://orcid.org/0000-0002-8064-4185
https://orcid.org/0009-0003-4368-318X
https://orcid.org/0000-0003-4696-9637
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7093792


(2) In the actual assignment process, tasks and workers
change dynamically, and the platform only knows
local spatiotemporal information. Therefore, the
platform needs to mine the historical spatiotemporal
information to optimize the task assignment strategy
in decision-making

(3) Due to the spatiotemporal continuity, the recent
decision of the platform not only affects the current
assignment result but also affects the following
assignment result. Most of the original assignment
strategies are limited to the optimal assignment in a
certain stage, while the optimization goal of the plat-
form is the optimal global assignment for the entire
period

In order to solve the above problems, this paper designs
a dynamic participatory task assignment framework. The
framework considers the Markov decision process model-
ing of a single worker and introduces a deep reinforcement
learning model to help the platform’s decision-making at
each period. In building a deep reinforcement learning
model, each step of the platform’s decision for a single
worker is to estimate the state-action value function within
the current worker’s perception range and guide the worker
to a place where future tasks are more intensive in its per-
ception range. We use the DDQN [12] model to train his-
torical data effectively, and the generated Q network is used
to assist the decision-making of the platform’s online
assignment. At the same time, this paper designs a dynamic
MCS task assignment framework, which fully considers the
spatiotemporal and randomness of tasks and workers.
There is a series of executable tasks within the perception
range of workers in each period, and the platform maxi-
mizes the total number of tasks completed by the workers
in all periods through a reasonable task assignment. Specif-
ically, based on the maximum flow model [13] and com-
bined with the auxiliary decision-making of the Q
network, this paper realizes the dynamic online assignment
of multiple periods and reaches the global maximum num-
ber of completed tasks on the platform. In summary, this
paper’s dynamic task assignment framework has the follow-
ing characteristics:

(1) Before task assignment begins, a Markov decision
process is modeled for a single worker. We first use
the DDQNmodel for offline training of the historical
task set in crowdsensing task assignment to generate
a Q network for real-time prediction

(2) When performing online dynamic task assignments,
the predicted value of the Q network and the impact
of current decisions on future decisions are consid-
ered to achieve the global optimal task assignment
under the platform’s completion of the largest tasks
in each period

(3) According to the characteristics of MCS dynamic
task assignment, this paper thoroughly mines the
spatiotemporal information of historical data, estab-

lishes an MCS dynamic task assignment framework
based on deep reinforcement learning, and verifies
the good performance of this framework through
experiments

2. Related Work

The task assignment goal is to assign perceptual tasks to
eligible users, and in much literature, a lot of research has
been done on task assignment algorithms for traditional
MCS [14, 15]. Liu et al. [16] considered the comprehensive
sensing quality of MCS to optimize the utility of the whole
system. Xiao et al. [17] proposed a task assignment scheme
of independent perception and cooperative perception, and
the optimization goal is to minimize the average completion
time of tasks. Yang et al. [18] maximize the amount of
budget information for task performers under budget con-
straints. Liu et al. [19] proposed two dual-objective multitask
assignment models, namely, FPMT and MPFT, and pre-
sented corresponding solving algorithms. Zhang et al. [20]
proposed a hybrid perceptual task model with the goal of
maximizing task completion and perceptual coverage.
Zhang et al. [21] used a greedy heuristic algorithm and a
genetic algorithm to solve the problem based on two optimi-
zation objectives in the vehicle crowdsensing system. Li et al.
[22] established an optimization model for crowdsourcing
task assignment in heterogeneous spaces: maximizing task
coverage and minimizing incentive cost and designed a
greedy swarm intelligence optimization algorithm to solve
two optimization objectives.

In studies where workers select a single MCS task, task
assignment has specific goals and constraints. For example,
the literature proposes different recruitment strategies to
select a predefined number of workers to maximize the per-
ceived quality of the task [4–6]. Zhang et al. [23] chooses a
minimum number of workers to ensure a certain degree of
perceived quality. Ji et al. [24] propose a mobile crowdsen-
sing system with social awareness and design an improved
MOEA/D algorithm to achieve the Pareto optimal solution
set. As the number of MCS tasks increases and the tasks
are interrelated, some studies consider the overall utility of
multiple concurrent perception tasks. For example, Song
et al. [25] and Wang et al. [26] both proposed multitask
assignment algorithms that maximize the system’s overall
utility when tasks share a limited incentive budget. The mul-
titask assignment strategy proposed by Wang et al. [27] is
aimed at optimizing the overall utility when multiple tasks
share a constrained worker pool.

Some studies collect location-related data centrally with-
out any time constraints. Shah-Mansouri and Wong [28]
used the auction mechanism to maximize the profit of a
single-task platform without a time limit while providing
satisfactory rewards for workers. Zhou et al. [29] used a
single-objective optimization method with budget con-
straints to maximize task quality efficiency under the pre-
mise of considering employee reputation and no time
constraints. However, in practice, users need to complete
these tasks before certain deadlines, so we need to consider
the impact of time on task assignments. Some recent studies

2 Wireless Communications and Mobile Computing



have focused on centralized task assignment schemes with
time constraints. For example, Cheung et al. [30] considered
collecting time-sensitive and location-dependent perception
data by multiple users. They proposed a distributed algo-
rithm to help users determine their task choices and mobility
plans. Estrada et al. [31] studied the trade-off between qual-
ity, budget, and time constraints of perception tasks over a
period of time. They provided a service computing frame-
work for task assignments with time and location
constraints.

In recent years, reinforcement learning has been used in
the MCS to make a range of decisions in uncertain environ-
ments. Ji et al. [32] construct a dynamic task allocation
model and proposes a Q-learning-based hyperheuristic evo-
lutionary algorithm to maximize the average perceived qual-
ity of all tasks in each period. Akter et al. [33] proposed a
deep Q-learning-based algorithm to determine the assign-
ment of tasks and workers and iteratively used the asymmet-
ric travelling salesman (ATSP) heuristic to find the task
completion order of workers. Wang et al. [34] proposed a
privacy-enhanced multiregional task assignment strategy
(PMTA) for Healthcare 4.0 using deep differential privacy,
deep Q network, federated learning, and blockchain to effec-
tively protect the privacy of tasks and patients and obtain
better system performance. Tao and Song [35] tried to use
deep reinforcement learning methods to find a more efficient
task assignment solution and used DDQN to solve the task
assignment problem with time windows. Wang et al. [36]
proposed a blockchain-based secure data aggregation strat-
egy (BSDA) for edge computing-enhanced IoT. BSDA
adopts three important mechanisms to prevent privacy leak-
age and develops a deep reinforcement learning method for
energy-efficient data aggregation. Han et al. [37] proposed a
real-world-oriented multitask assignment method based on
multiagent reinforcement learning. This method fully con-
siders worker and task heterogeneity. It is based on an
improved soft Q-learning method that enables workers as
agents to learn multiple solutions independently, which
optimizes the perceptual quality of tasks. The above litera-
ture mainly applies reinforcement learning to task assign-
ment optimization with time windows. The platform finds
the optimal assignment strategy offline after knowing all
the information about the workers and tasks. However, in
actual task assignments, workers and tasks are dynamically
changed. This paper first uses reinforcement learning in
crowdsensing task assignments to train offline on historical
data and provide decision-making for dynamic platform
assignments.

3. Model Description and Problem Definition

Assuming that there is a batch of worker sets and task sets
with spatiotemporal attributes in the MCS platform, the
platform needs to assign appropriate tasks to each worker
dynamically. In order to simplify the model, this paper
divides the entire task assignment stage of the platform into
equal small periods represented by T = ft1, t2,⋯, tk,⋯thg.
Workers in all periods are represented by the set W = fw1,
w2, ::,wi,⋯wmg, and each worker has the following attri-

butes: wi = hlati, lngi, ti, tiki. Among them, lati and lngi rep-
resent the current latitude and longitude coordinates of the
worker and ti represents the period when the worker
joined the platform. Workers will continue to participate
in task assignment after joining until reaching the dead-
line th, so tik represents the period the worker is in,
where ti ≤ tik ≤ th. The task in all periods consists of the
set L = fl1, l2,⋯, l j,⋯:lng, and the task has the following
attributes: l j = hlatj, lngj, t j, nji. Among them, latj and
lngj represent the latitude and longitude of the task and
t j represents the period when the task is posted to the
platform, where t1 ≤ t j ≤ th. In this article, the task is
time-sensitive, it needs to be completed within the period
t j, and nj represents that a task is done by at most nj

different workers.
Different from traditional task assignments, tasks and

workers are dynamic in the task assignment process of this
paper, and the platform only has information on workers
and tasks in the current period. In the period tk, the set
of workers is composed of tik = tk workers, using the set
Wtk = fwtk

1 ,w
tk
2 ,⋯,wtk

i ,⋯wtk
m′g, where m′ ≤m; the task

set consists of t j = tk tasks, using the set Ttk = fttk1 , ttk2 ,⋯,
ttki ,⋯ttk

n′g, where n′ < n. Each worker can only be assigned

amaximum of one task in each period, if the workerwtk
i is cur-

rently assigned a task, then wltki = 1; otherwise, wltki = 0.
Figure 1 shows the system model of dynamic task assignment
in each period. Firstly, the platform obtains information about
workers and tasks in the current period. Then, the platform
will assign each worker a task within the maximum perception
radius Dmax based on the current spatiotemporal information
of workers and tasks. The assignment result will be returned to
the worker. After receiving the task instruction, the worker
moves to the task location to complete the task in this period
and uploads the perception information to the platform.
Finally, the platform will return the perception result to the
task issuer, update the spatiotemporal information of the
worker and the task, and enter the allocation of the next
period. In particular, to simplify the model, this paper con-
siders the ideal case where the tasks appearing in each period
of the MCS are time-sensitive and the value of the tasks is
much larger than the cost of moving the workers within their
perceived range. Therefore, we do not consider worker con-
sumption and assume that all tasks within the worker’s per-
ceived range are equal, while the main goal of the platform is
to guide the worker to complete more tasks. Suppose there is
no task that can be assigned to the worker within the percep-
tion range of the current period. The worker will stay at the
original location or move a short distance randomly in the
perception range, waiting for the assignment of the next
period.

Therefore, we define the cumulative number of tasks
completed by the platform as the sum of the number of tasks
completed in multiple periods throughout the assignment:

Σh
k=1Σ

Wtkj j
ⅈ=1 wltki : ð1Þ

3Wireless Communications and Mobile Computing



In Equation (1), jWtk j represents the total number of
workers in the worker set Wtk in the period tk, and wltki rep-
resents the tasks completed by the workers wtk

i in the period
tk. In the actual assignment process, the platform needs to
consider the positions of workers and tasks in real time. In
order to ensure that workers can complete perception tasks
within a period, this paper defines the maximum task per-
ception radius of workers:

d ≤Dmax: ð2Þ

The distance d between the worker and the task in
Equation (2) is obtained from the latitude and longitude
coordinates of the worker and the task according to the
haversine formula:

d = 2rarc sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

lati − lat j
2

� �
+ cos latj

À Á
cos latið Þ sin2 lngi − lngj

2

� �s0
@

1
A,

ð3Þ

where r is the radius of the earth and lati, lngi, latj, and lng j
are the latitude and longitude coordinates of workers and
tasks, respectively.

The goal of MCS is to maximize the total number of
completed tasks, from which we obtain the optimization
objective and spatiotemporal constraints for dynamic task
assignment:

max Σh
k=1Σ

Wtkj j
ⅈ=1 wltki : ð4Þ

Subject to:

LWj

�� �� ≤ nj, ð5Þ

tik = tk = t j, ð6Þ

di ≤Dmax: ð7Þ
Equation (4) indicates that the optimization goal of the

platform is to maximize the number of completed tasks in
multiple periods. In Equation (5), jLWjj represents the num-
ber of workers who complete task l j, which is less than nj of
the task. Equation (6) is the time limit, where tik = tk = t j
means that the worker wtk

i needs to arrive at the task location
within the tk period to complete the task l j. Equation (7) is
the space limit, which means that the task perception radius
di of worker wi in each period is smaller than Dmax.

4. Problem Solving

The most important feature of dynamic task assignment is
that the platform does not have complete spatiotemporal
information about workers and tasks throughout the period
so that the current decision-making will impact future
decision-making. Therefore, we consider the dynamic task
assignment problem as a multistage sequential decision-
making problem. Firstly, the Markov decision process is
modeled for a single worker and then used the improved
DDQN algorithm to train historical data to generate a Q
network. Finally, the overall framework of MCS dynamic
task assignment is designed to achieve reasonable task
matching in all periods.

4.1. Markov Decision Process Modeling from a Single Worker
Perspective. A Markov decision process (MDP) is a
discrete-time stochastic control process that provides a
mathematical model for decision-making problems. Most
of the literature conducts MDP modeling on the entire
MCS platform [31, 33]; however, this will make the model

𝛥

MCS platform

①

②
③

④

⑤

⑥

① Post tasks in the period

② Get works information in the period

③ Assign tasks to workers

⑤ Return result to requesters

⑥ Go to next period

④ Execution of the sensing tasks

Works

Tasks

t

Figure 1: Dynamic task assignment model of MCS platform in each period.

4 Wireless Communications and Mobile Computing



complex, and it is difficult to fully learn the information in
the environment. In this paper, MDP modeling of task
assignment is carried out from the perspective of a single
worker, and a single worker is regarded as an agent, which
significantly simplifies the definitions of state transitions,
actions, and rewards. The relevant definitions are as
follows:

State s is defined as the information of a single worker
in the system, that is, s = hlati, lngi, tiki, where lati and lngi
represent the worker’s latitude and longitude coordinates,
and tik represents the current period of the worker. When
tik > th, s is a termination state. Specially, when training
the Q network, in order to better explore the historical
environment and reduce the influence of the randomness
of the initial position, the agent is not limited by the perception
range in the initial state. The initial state is represented by
S∗0=hlati∗0 , lngi∗0 , tik∗0 i, where hlati∗0 , lngi∗0 i is a virtual location
label, and the agent can select all the tasks in the initial
period tik

∗
0 , so that it can fully explore the historical task

expected value.
Action a is defined as the task information assigned to

the worker by the platform, and the worker can only
complete the task in the period, so we set the action as the
position of the task, that is, a = hlatj, lng ji, where latj and
lngj indicate the latitude and longitude coordinates of the
task. The feasible action search of the agent in the state is
shown in Figure 2: (a) In state s, all tasks within the range
of the agent perception are feasible actions. (b) If there is
no executable task within the perception range of the agent,
a virtual task (virtual action a∗) with return of 0 is con-
structed, and the worker considers staying in place or going
to any point within the perception range, waiting for the
allocation of the next period. (c) Specially, in the initial state
S∗0 of training the Q network, all tasks in the current period
are the feasible actions of the agent.

The worker goes to the task location to perform the
task and transitions to the next state s′ = hlati ′, lngi ′, tik ′i,
where lati ′ and lngi ′ are the latitude and longitude of
the task, tik ′ = tik + 1. Reward Rðs, aÞ represents the
worker’s benefit completing action a in state s. In this
paper, we assume that each task is equivalent and want
workers to travel to task-dense regions to avoid no feasible
tasks within the perception range of the following period.
Therefore, the reward Rðs, aÞ is set to a constant R, whose
magnitude is determined by the number of tasks within
the worker’s perception range. Specially, the reward is 0
when the action a∗ is taken. In the initial state S∗0 , since
the agent is not limited by the range of perception, the
rewards of all actions of the agent are equal.

The state-action function Qðs, aÞ represents the expecta-
tion of the total benefit that the worker can obtain in the
future when he takes action a in state s:

Q s, að Þ = E ΣT
t=0γ

tR st , atð Þjs0 = s, a0 = a
Â Ã

, ð8Þ

where T is the number of steps for state s to reach the termi-
nal state, and γ is the discount coefficient of future rewards.

Policy π refers to a probability distribution based on a set
of behaviours in a certain state. In this paper, model-
independent reinforcement learning is used to learn the opti-
mal policy through the interaction between the agent and
the environment to maximize the expected cumulative return.
The greedy policy with respect to a learned Qðs, aÞ is given by

π sð Þ = arg max
a

Q s, að Þ: ð9Þ

4.2. Offline Q Network Training Based on Improved DDQN.
Based on the definition of MDP, this paper adopts the
reinforcement learning algorithm to train the historical

Dmax

a

a

a
S

(a)

Dmax

a
⁎

S

(b)

a

a

a

a
a

a
a

S
⁎

(c)

Figure 2: Action search: (a) in state s, (b) in virtual action a∗, and (c) in the initial state S∗0 of training the Q network.

5Wireless Communications and Mobile Computing



data. Q-learning [38] is a widely used reinforcement learn-
ing method that mainly focuses on estimating the value
function for each state-action pair with a Q value table.
For any state s ∈ S and action a ∈ A, Q-learning predicts
the value of the state-action pair by iteratively updating

Q s, að ÞNew ⟵Q s, að Þ + α R + γ max
a′

Q s′, a′
� �

−Q s, að Þ
� �

,

ð10Þ

where α is the learning rate, γ is the discount factor, and R
is the reward for the state transition from s to s′ after tak-
ing action a. max

a′
Qðs′, a′Þ is the largest Q value function

among all possible actions in the new state s′.
Since the dynamic task assignment needs to use space-

time-based continuous state space S and action space A,
the dimension of the state space is large. This paper adopts
a single worker Markov decision process solution based on
DDQN [12] model and approximates the value function in
Q-learning with a deep neural network to find the optimal
policy. On the neural network architecture, traditional
DQN assumes a small discrete action space, using states as
inputs and multiple outputs corresponding to the action
values of fixed actions, as shown in Figure 3(a). Due to the
huge action space in the training historical data and
the action space that will change continuously over time,
Qðs, aÞ cannot be enumerated. Therefore, we improved
the network structure of DDQN in combination with lit-
erature [39], and Figure 3(b) shows the structure of a
deep neural network. The input consists of state s and
action a. State s contains the latitude and longitude
coordinates of the worker and the period. Action a con-
tains the latitude and longitude coordinates of the task.
Combined with literature [40], the hidden layer uses a
three-layer fully connected network, and the number of
neurons is set to 64,128 and 16, respectively. The output
is the state-action value Qðs, aÞ.

This paper uses the interaction of a single agent with the
historical data environment to explore the expected value of
tasks in different locations. The agent starts from the virtual

initial state S∗0 and generates the sample sequence hs, a, r, s′,
infoi required for training the neural network by interacting
with the environment of the historical task set and stores it
in the replay memory. When the replay memory is full, ran-
domly select a minibatch of data for training. In the Q net-
work training framework based on the DDQN algorithm,
the minibatch update via backpropagation is essentially a
step in solving a regression problem with the following loss
function:

Loss θð Þ = y −Q s, a, θð Þð Þ2, ð11Þ

where y is calculated from

y =
r, s′ is the termination state,

r + γQ∗ s′, arg max
a′∈A′

Q s′, a′, θ
� �

; θ∗
� �

, s′ is not a termination state:

8><
>:

ð12Þ

Finally, after the training is complete, the information of
the worker’s state-action pair is used as input, and the pre-
dicted Q value of the state action is output. Combined with
the characteristics of MCS dynamic task assignment, we
designed a Q network training algorithm based on the
DDQN model. The specific steps are as follows:

Algorithm 1 first selects the historical dataset H as the
historical environment of the task and has all the spatio-
temporal information of the environment during training.
The worker starts from the initial state, explores the his-
torical environment of the task, generates a training
sequence hs, a, r, s′, infoi, and puts it into the replay memory
D. After the replay memory D is full, the neural network
trained and updated the replay memory. When the worker
reaches the deadline, it becomes terminated and enters the
next loop. Through continuous training, the algorithm con-
verges and outputs the evaluation network Q.

4.3. A Dynamic Task Matching Strategy for Multiple Workers
in Each Period. In the actual task assignment process, there
may be multiple workers and tasks in each period. The opti-
mization goal of the MCS platform is to maximize the

Work
latitude

Work
longitude

Period

Input Output

Hidden layers

64
128

16

Q (s,a = 1)

Q (s,a = 2)

Q (s,a = 3)

State

(a)

Work
latitude

Work
longitude

Period

Task
latitude

Task
longitude

Input

Output

Hidden layers

64
128

16

Q (s,a)

State

Action

(b)

Figure 3: Deep neural network structure: (a) DDQN and (b) this paper.

6 Wireless Communications and Mobile Computing



number of completed tasks, which can be based on the max-
imum flow model [13] to maximize the number of com-
pleted tasks in each period. However, due to the continuity
of time and space, the platform’s current task assignment
decision will affect the following assignment result, and the
traditional maximum flow algorithm may fall into the opti-
mal local period. Therefore, we combine the prediction value
of the Q network to construct the worker task matching of
each period into a maximum Q value maximum flow model
to achieve the optimal matching of the entire period.
Figure 4 shows the model diagram of the network. The first
layer and the tail layer are the source node and the tail node,
respectively, and the middle layers contain the platform’s
worker nodes and task nodes in the current period. Each
edge has two attributes: capacity C and cost B. For the edge
between the source node and the worker node, the capacity
of each edge is 1, reflecting that each worker is assigned at
most 1 task per period; the cost of the edge is 0, because
the edge between the source node and the worker node is

only used for inflow. For the edge between the worker
node and the task node, the platform assigns the corre-
sponding edge in the graph by searching for the task set
within the maximum perception range under the current
spatiotemporal information of each worker. The capacity
of each edge is 1, and the cost of the edge is Qðs, aÞ. For
edges between task nodes and tail nodes, each edge has
a capacity of nj, which reflects the maximum number of
a task can be completed by different workers; the cost of
the edge is 0, because edges between task and tail nodes
are only used for outflow.

This paper proposes a maximum Q value maximum
flow matching strategy (MaxflowQ) in each period, as
shown in Algorithm 2. The platform maximizes the sum
of Qðs, aÞ values of workers while matching worker tasks
in each period to the maximum flow, so as to achieve
the overall optimization of dynamic assignment. Algo-
rithm 2 consists of two parts: one is to construct the flow
network of the model, and the other is to find the optimal

Input: Historical data set H, replay memory D, maximum training episodes N, a constant Z, initialization evaluation network Q and
target network Q∗

Output: Evaluate network Q
1: For step from 1 to N do
2: Initialized worker state S∗0=hlati∗0 , lngi

∗
0 , tik∗0 i

3: while s′ is not the termination state do
4: if s is the initial state S∗0 then
5: Take the task with period equal to tik

∗
0 in the historical data set H as the

action set of the current state s
6: else
7: Obtain the action set of the current state s in the historical data set H

according to the spatiotemporal constraints of Equation (6) and Equation (7)
8: end if
9: if the action set of s is empty then
10: The worker executes the virtual task a∗, the state transitions to s′, and

the reward r is 0
11: Store hs, a, r, s′, inf oi in the cache memory, where s′ is the next state,

r is the reward, and inf o is whether s′ is the termination state
12: else
13: Take ϕðs, aÞ as input to get the Qðs, a, θÞ value for each state-action

pair
14: Use the ε − greedy method to select the corresponding action a in the

output of the current Qðs, a, θÞ value
15: Get s′, r, inf o according to action a. and store hs, a, r, s′, inf oi in the

replay memory
16: end if
17: if replay memory D is full then
18: Cover a piece of data in D and extract a mini-batch to randomly sample

hs, a, r, s′, inf oi for learning
19: Calculate the target value y according to Equation (12)
20: Gradient descent update of evaluation network Q parameters according

to the loss function of Equation (11)
21: Update the target network Q∗ parameters every Z step θ∗ = θ
22: end if
23: s = s′
24: end while
25: end for

Algorithm 1: Q network training algorithm based on DDQN model.

7Wireless Communications and Mobile Computing



solution in the flow network. The platform constructs a
flow network G = ðV , E, C, BÞ based on the worker set
Wtk in the current period, the task set Atk

i within the per-
ception range of each worker, and the Qðs, aÞ set of
workers wtk

i , where C is the capacity of each edge and B
is the cost of each edge, as shown in Figure 4. Subse-
quently, the optimal solution is found in the flow network.
The procedure is as follows: firstly, initialize the flow
graph G and then greedily select the augmented path p∗

from node source to node tail in the residual network

Gf with maximum cost, along p∗ with the capacity of cf
ðp∗Þ increases flow f until there are no additional paths
in the remaining network Gf . Finally, the algorithm out-
puts the worker task matching set WLtk for the current
period.

4.4. MCS Dynamic Task Assignment Solution Framework.
Through the above discussion, we construct the overall
framework to solve the dynamic task assignment of the
MCS platform, as shown in Figure 5.

Source

m′1 2 3

Tail

1 2 3 4 n′

1/0
1/0 1/0

1/0

n1/0
n2/0

n3/0 n4/0 nn′/0

1/Q (s,a)

1/Q (s,a)

1/Q (s,a)

1/Q (s,a)

1/Q (s,a)

1/Q (s,a)

1/Q (s,a)

1/Q (s,a)

1/Q (s,a)

Works in each
period

Tasks in each
period

1/Q (s,a)

Figure 4: Maximum Q value maximum flow model.

Input: The platform worker setWtk in the current period, the task set Atk
i within the perception range of each worker, the Qðs, aÞtki set

of workers wtk
i .

Output: Worker task matching set WLtk in the current period.
1: According to Wtk , Atk

i , Qðs, aÞtki constructs the flow graph G = ðV , E, C, BÞ
2: Initialize flow f to 0
3: while there exists an augmenting path in the residual network Gf do
4: Select an augmenting path p∗ with the largest Q value
5: cf ðp∗Þ = 1
6: Augment flow f along p∗ with cf ðp∗Þ
7: Update residual network Gf

8: Save worker task matches
9: Update matching set WLtk
10: end while

Algorithm 2: Maximum Q value maximum flow matching strategy (MaxflowQ).

8 Wireless Communications and Mobile Computing



The task assignment system of the MCS platform con-
sists of two modules: the Q network module and the
dynamic task assignment module. Before the task assign-
ment starts, the MCS platform uses historical data to train
offline according to Algorithm 1 to generate a Q network
for decision-making assistance. During task assignment,
the MCS platform uses the dynamic task assignment module
to match workers and tasks in real time at each period,
including the following three steps: (1) The platform first
obtains the spatiotemporal information of the worker set
Wtk and the task set Ltk in the current period and searches
for the task set Atk

i within the perception range of each
worker wtk

i based on the spatiotemporal information. (2)
The platform generates the state-action pairs of the worker
wtk

i according to the task set Atk
i of each worker wtk

i . The Q
network module is then called to generate Qðs, aÞtki values
for all actions in the current state of worker wtk

i , which is
used to assist the platform’s task assignment decisions.
(3) Finally, the platform will construct a flow network
G = ðV , E, C, BÞ according to Algorithm 2 and generate
the optimal worker task matching for the current period
tk. After receiving the task information sent by the plat-
form, the workers move to the corresponding location
to complete the task and enter the allocation for the next
period. When the deadline is reached, the platform com-
pletes the assignment and exits the dynamic task assign-
ment framework. From this, we construct the dynamic
task assignment of the MCS platform as Algorithm 3.

5. Experimental and Analysis

5.1. Experimental Dataset Selection and Processing. In order
to verify the effectiveness of the framework, two real data-
sets, the Gowalla dataset [41] and the Foursquare dataset
[42], were selected for model training and testing. The
Gowalla dataset contains check-in records which contain a
large number of users, including user ID, check-in time, lat-
itude, longitude, and location ID. The Foursquare dataset
contains check-ins collected in New York City and Tokyo,
and each check-in contains the following records: user ID,
venue ID, venue category ID, venue category name, latitude,
longitude, time zone offset in minutes, and UTC time.

In the experiment, the check-in data from 9 : 00 to 12 : 00
in New York City for two months in two datasets were
selected as the training set, and the data of different days
after the training set was used as the test set. The latitude
and longitude of the check-in records in the dataset are
regarded as the location of the task set in the MCS, and a
randomly different maximum number of nj is generated
for each task. At the same time, in order to simplify the
model, the check-in data of the Gowalla dataset and the
Foursquare dataset are divided into 24 periods and 40
periods with the same interval, and the check-in data of
the same place in the same period is deleted. In addition,
the initial check-in location and period of workers with dif-
ferent IDs are selected as the initial period and location of
workers for task assignment testing. At the same time, in
the two datasets, there are obviously hot and cold areas in

The Q network is
trained according to

algorithm 1

Q Network module

Worker is the
initial state

Generate virtual
location labels

for workers

Generate the set of
Q (s, a) for each

worker according to
the Q network

Update worker and
task spatiotemporal

information

Match according
to algorithm 2

Get the Q (s,a) value
of the worker

Get the worker
feasible task set

Get task
information

Get work
information

Get task assignment

Exit the platform

Start the current
period

Go to the next
period

Is it a deadline

No

No

Yes

Yes

Dynamic task assignment module

Figure 5: Dynamic task assignment solution framework.

9Wireless Communications and Mobile Computing



the check-in locations in New York City, so a rectangular
area of about 15 km × 10 km was intercepted, as shown in
Figure 6.

5.2. Experimental Environment and Parameter Settings. The
experiment is implemented based on python and uses
PyTorch to build a deep neural network model. The choice
of parameters when training a deep reinforcement learning
network may affect the solution results. There are general
principles to follow and related literature for reference [12,
39]. The randomly chosen action probability ε decreases from
0.2 to 0.1 during training. The discount factor measures the

weight of the subsequent state-action value to the total return,
so the value is generally close to 1, and γ = 0:95 in the experi-
ment. The learning rate α = 0:001, the replay memory capacity
RM= 50000, the sampling minibatch is 64, the network
parameter θ, θ∗ adopts a random initialization strategy, the
target network parameter θ∗ delay update steps Z = 300, the
rule activation function is used, and the adaptive moment esti-
mation algorithm is selected. At the same time, in order to
eliminate the dimension, the data obtained from the input
layer of the neural network is normalized. The specific param-
eter settings of Q network training and dynamic task assign-
ment test are shown in Table 1.

Input: Task set L, worker set W, evaluation network Q
Output: Complete task set WL
1: for tk from 1 to h do
2: Obtain the worker set Wtk and the task set Ltk in the current period
3: for wtk

i from 1 to jWtk j do
4: Obtain the feasible task set Atk

i of worker wtk
i in Ltk according to the

spatiotemporal constraints of Equation (6) and Equation (7)
5: if Atk

i is empty then
6: Workers stay in place or move a short distance at random in perception

range, waiting for the next period to be allocated
7: Continue
8: end if
9: if Worker wtk

i is the initial state then
10: Set the value of the Q network input of the worker wtk

i as the virtual
location label hlati∗0 , lngi

∗
0 i

11: end if
12: Generate state-action pairs for workers wtk

i
13: Input the state-action pair to the Q network generated by Algorithm 1, and

obtain the Qðs, aÞtki set of workers wtk
i

14: end for
15: Generate worker task matching set WLtk according to Algorithm 2
16: Update worker and task information
17: Proceed to the next period's assignment
18: end for

Algorithm 3: MCS dynamic task assignment algorithm

40.5 40.6 40.7 40.8 40.9
Latitude

Lo
ng

itu
de

–74.2

–74.1

–74.0

–73.9

–73.8

–73.7

(a)

Lo
ng

itu
de

41.040.940.840.7
Latitude

40.6
–74.3

–74.2

–74.1

–74.0

–73.9

–73.8

–73.7

(b)

Figure 6: Schematic diagram of the selected area: (a) Gowalla and (b) Foursquare.

10 Wireless Communications and Mobile Computing



5.3. Evaluation of Q Network

5.3.1. Parameter Selection of Training. In training on
historical data, we hope to learn optimal policies through
worker-environment interactions that maximize the
expected cumulative return. Therefore, this paper uses the
improved DDQN model to learn the optimal strategy. The
DDQN model is sensitive to the selection of hyperparameter
such as the learning rate. To explore the effect of different
learning rates on the optimal learning of DDQN models,
the experiment sets tik

∗
0 in the worker’s initial state S∗0 to 1

in each iteration and compares the worker’s reward value
in the same initial state. The learning rate is set 0.01, 0.001,
and 0.0001, respectively. The maximum perception radius
Dmax is set to 2 km, and the maximum episode is set to
30,000.

Figure 7 shows the evolution of the reward value during
training the historical data in Gowalla and Foursquare, using
a sliding window every 50 episodes to calculate the reward
value curve. As can be seen from the figure, among the three
learning rate settings, the highest reward value for training is
achieved with a learning rate of 0.001. The learning rate of
0.0001 converges the slowest. Although the reward rises fast-
est at a learning rate of 0.01, it has worse values and fluctu-
ations in convergence than the case of a learning rate of
0.001. The stability of the training process and the better
strategy is more important than the training speed. There-
fore, we set the learning rate to 0.001 in the Q network
training.

5.3.2. Q Network Train and Analysis. The experiment uses
Algorithm 1 to train the historical data. The converged
Q network can be used to predict the expected Q values
of dynamically changing worker task pairs in real envi-

ronments. The initial state of the worker is set to S∗0 =
hlati∗0 , lngi∗0 , tik∗0 i. Since workers mostly appear at the initial
time of the platform allocation distribution in practice, at each
iteration, tik

∗
0 randomly selected integers from 1 to 3. The

maximum perception radius Dmax for a single worker is set
to 2 km, and the number of network training is set to 50,000
episodes.

Figure 8 shows the changes in the value of the LossðθÞ =
ðy −Qðs, a, θÞÞ2 function value during the training process in
the Gowalla dataset and the Foursquare dataset, respectively.
For the training results, a sliding window every 50 times was
used to calculate the loss value curve. It can be seen from the
figure that the function value has a good convergence effect.
During the training process, the function value will fluctuate
due to the agent’s exploration of the environment and acquir-
ing new environmental information. With the continuous
increase of training times, the fluctuation range of the function
value will gradually become smaller, and there is a decreasing
trend.

In this paper, we expect workers to travel to task-
intensive areas based on the predicted values of the Q net-
work to avoid no feasible tasks within the perception range
of the next period. To verify the predictive effectiveness of
the Q network, we compare the expected values of different
locations in the same period. The state value function VðsÞ
represents the expected cumulative reward that workers will
be able to obtain by following policy π from state s until the
end of the state. Assuming that a greedy strategy based on
state-action value Qðs, aÞ is always used in the assignment
process, then the state value function VðsÞ is shown in

V sð Þ =Q s, π sð Þð Þ =max
aϵA

Q s, að Þ: ð13Þ

Figure 9 shows the distribution of the V value (the max-
imum Q value of all possible action-state pairs in the current
state) for different states in a certain period in the Gowalla
and the Foursquare datasets, respectively. It can be seen that
the V values of different states in the same period are mainly
affected by space. The part with a large red V value in the
figure corresponds to the area with denser tasks in the lower
right corner of Figure 6, while the blank area and the blue V
value of the small part in the figure correspond to the blank
area and the area with sparse data in Figure 6. It shows that
the Q network has good predictability for the hot and cold
distribution of tasks in different regions.

In summary, it shows the good performance of Q network
in this paper. The Markov decision process is modeled for a
single worker, and the Q network generated by training evalu-
ates its own state to find a better strategy. However, when the
platform performs dynamic allocation, multiple workers will
affect each other. Then, the experiment will perform the joint
dynamic assignment of different workers in the test task set to
simulate the assignment in the actual scene and verify the
effectiveness of the proposed framework.

5.4. Evaluation of Dynamic Task Assignment System
Framework. In this section, we evaluate the performance of
the overall dynamic task assignment system framework in

Table 1: Experiment definition parameters.

Parameters Settings

RM (capacity of the replay memory) 50000

ε (probability of random selection) 0.2-0.1

Z (steps to update the target network) 300

γ (discount factor) 0.95

α (learning rate) 0.001

Minibatch size 64

Sliding window 50

N (maximum training episodes in
Algorithm 1)

50000

nj (the maximum number of a
task completed)

1-3

Periods in Gowalla 24

Periods in Foursquare 40

Number of workers in Gowalla [60,70,80,90,100]

Number of workers in Foursquare [30,40,50,60,70]

Task test sets days in Gowalla [7,9,10,12]

Task test sets days in Foursquare [10,12,15,20]

Dmax (perception radius) [1 km, 2 km, 3 km]

11Wireless Communications and Mobile Computing



Learning rate = 0.01
Learning rate = 0.001
Learning rate = 0.0001

450

400

350

300

250

200

150

100

0 5000 10000 15000
ep

20000 25000 30000

Va
lu

e
Reward

(a)

Learning rate = 0.01
Learning rate = 0.001
Learning rate = 0.0001

300

250

200

100

150

50

0 5000 10000 15000
ep

20000 25000 30000

Va
lu

e

Reward

(b)

Figure 7: Reward value in different learning rates: (a) Gowalla and (b) Foursquare.

25

20

15

10

5

0

0.0 0.2 0.4 0.6 0.8 1.0

Va
lu

e

Times 1e6

Loss

(a)

25

30

35

20

15

10

5

0

Va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Times 1e6

Loss

(b)

Figure 8: Q network loss function value: (a) Gowalla and (b) Foursquare.

140

135

130

125

V

–74.01
–74.00

–73.99
–73.98

–73.97
–73.96

–73.95
–73.94

122.5

125.0

135.0

137.5

140.0

127.5

130.0

132.5

142.5

40.80

40.78

40.76

40.74

40.72

40.70

Longitude

La
tit

ud
e

(a)

90

80

70

60

50

V

–74.02
–74.00

–73.98
–73.96

–73.94
–73.92 40.80

90

85

80

75

7040.78

40.76

40.74

40.72

40.70

Longitude

Lati
tude

(b)

Figure 9: V values of different states in a certain period: (a) Gowalla and (b) Foursquare.

12 Wireless Communications and Mobile Computing



different experimental environments. The baseline matching
strategy in each period is as follows:

(1) Random: the platform randomly selects tasks for
workers to execute in each period

(2) Ranking algorithm [43]: the ranking algorithm for
online bipartite graph matching problem proposed
by Karp et al. The workers are sorted before the start
of each period, and the platform matches the
workers according to the order until the platform
reaches the deadline

(3) Maximum flow [13]: worker task matching is per-
formed from the perspective of maximizing the
number of completed tasks in each period. We use
the Ford-Fulkerson algorithm to calculate the maxi-
mum flow

(4) Maximum Q value maximum flow (MaxflowQ):
strategy of this paper. Based on the maximum flow
strategy, considering the impact of current decisions
on future decisions, the DDQN model [12] is intro-
duced to train historical data to generate a Q net-
work for real-time prediction and optimize the
dynamic matching strategy. In each period, the
action state value output by the Q network is used
as the weight of the maximum flow matching, and
the maximum matching number and the maximum
Q value of the platform in the current period are
obtained

5.4.1. The Effect of Different Numbers of Workers on Task
Assignment. When the platform performs dynamic assign-
ment, multiple workers will influence each other, resulting
in changes in the number of tasks completed by workers.
This section compares the number of tasks completed by
the platform on the Gowalla dataset and the Foursquare
dataset under different total worker counts. The maximum

perception radius is set to 2 km, and the test set is the data
of 10 days and 15 days after the training set of Gowalla
and Foursquare, respectively. It can be seen from
Figure 10(a) that our strategy is better than other compari-
son strategies in the Gowalla dataset, and as the number of
workers increases, our strategy shows better performance
and can complete a larger number of tasks than other strat-
egies. Figure 10(b) shows that on the Foursquare dataset,
when the number of workers is 30, the strategy of this paper
is close to the comparison strategy. With the increase of the
number of workers, the strategy of this paper is better than
other comparison strategies. However, the maximum flow
strategy is more likely to fall into a local period optimum
due to the increase of the assignment period and the number
of workers. Combining Figures 10(a) and 10(b), it can be
seen that due to the addition of the Q network in the
decision-making process, our strategy shows better perfor-
mance when the number of workers increases. Furthermore,
it is not easy to fall into the optimum of the local period,
which reflects the effectiveness of introducing reinforcement
learning to consider the impact of current decisions on
future decisions.

5.4.2. The Impact of Different Task Test Sets on Task
Assignment. In the dynamic assignment process, the envi-
ronment is dynamic and uncertain. To explore the perfor-
mance of the framework in different environments, the
experiments in this section select test task sets of different
days in the Gowalla dataset and the Foursquare dataset to
compare the number of tasks completed by the platform.
The maximum perception radius of workers is set to 2 km,
and the number of test workers on the Gowalla and Four-
square test sets is 70 and 50, respectively. It can be seen from
Figure 11(a) that the strategy in this paper is better than
other comparison strategies under different test sets in the
Gowalla dataset. Moreover, this strategy outperforms the
other strategies when the test set is sparse with 7 and 9 days
of data. From Figure 11(b), we can see that in the Foursquare

1400

1350

1300

1250

1200

1150

1100

60

Random

Ranking

Maxflow

MaxflowQ

70
Number of works

80 90 100

C
om

pl
et

ed
 ta

sk
s

(a) (b)

Figure 10: Number of tasks completed by different workers: (a) Gowalla and (b) Foursquare.

13Wireless Communications and Mobile Computing



dataset, due to the sparse tasks in the 10 days and 12 days test
sets, the maximum flow matching strategy falls into a local
period optimum, resulting in a low number of overall task
assignments. In the 20-day task set, the number of tasks com-
pleted by the maximum flow matching strategy is close to the
strategy in this paper due to the denser tasks. The combined
Figures 11(a) and 11(b) show that the strategy of this paper
outperforms other comparative algorithms under different test
sets. And it is not easy to fall into the local period optimum,
which indicates that the dynamic assignment framework is
stable in the actual test environment.

5.4.3. The Effect of Different Perception Radius Dmax on Task
Assignment. The worker’s perception range determines the
task set that a worker can choose in each period, which will
affect the platform’s matching result for the worker. The

experiments in this section compare the number of tasks
completed by the platform on the Gowalla dataset and the
Foursquare dataset for workers with different maximum
perception radius Dmax. The test set in the Gowalla dataset
is 10 days of check-in data, and the number of test workers
is 60. The test set in the Foursquare dataset is 15 days of
check-in data, and the number of test workers is 50. At the
same time, we trained Q networks with maximum percep-
tion radius of 1 km and 3 km, respectively, based on the Q
network with maximum perception radius of 2 km. From
Figures 12(a) and 12(b), it can be seen that the strategy in
this paper can complete more tasks under different percep-
tion ranges. With the increase of the worker’s perception
range, the worker can perceive more tasks at each assign-
ment, and the platform can more easily find the optimal
assignment for each worker, showing better performance.

1200

1000

1100

800

900

600

500
1 km 2 km

Dmax

3 km

700

C
om

pl
et

ed
 ta

sk
s

Random

Ranking

Maxflow

MaxflowQ

(a)

1200

1300

1000

1100

800

900

600

500

700

C
om

pl
et

ed
 ta

sk
s

1 km 2 km
Dmax

3 km

Random

Ranking

Maxflow

MaxflowQ

(b)

Figure 12: Number of tasks completed by workers under different perception radius: (a) Gowalla and (b) Foursquare.

1400

1200

1000

800

600

C
om

pl
et

ed
 ta

sk
s

7 days 10 days 12 days9 days
Test task set

Random

Ranking

Maxflow

MaxflowQ

(a)

1400

1200

1000

800

600

C
om

pl
et

ed
 ta

sk
s

10 days 15 days 20 days12 days
Test task set

Random

Ranking

Maxflow

MaxflowQ

(b)

Figure 11: Number of tasks completed by workers in different test task sets: (a) Gowalla and (b) Foursquare.

14 Wireless Communications and Mobile Computing



6. Conclusion

This paper constructs a dynamic task assignment framework
for MCS based on deep reinforcement learning. First, a sin-
gle worker is modeled for the Markov decision process, and
the DDQN model is used to train the historical task set to
generate a Q network for real-time prediction. Then, in the
process of dynamic task assignment, the maximum Q value
maximum flow matching strategy is used to maximize the
number of completed tasks in each period while enabling
workers to travel to task-intensive areas in order to avoid
no feasible tasks in the perceived range in the future. As a
result, the global maximum task assignment of the platform
is achieved. In the following work, we will focus on the het-
erogeneity of workers and tasks, explore the cooperation and
competition of workers in large-scale task assignments, and
try to introduce related theoretical knowledge, such as game
theory and multiagent reinforcement learning to optimize
the frame.

Data Availability

The experiment uses the datasets of the Gowalla dataset [41]
and the Foursquare dataset [42]. All datasets can be accessed
from the relevant references.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (62172182).

References

[1] X. Wang, S. Garg, H. Lin, G. Kaddoum, J. Hu, and M. M. Has-
san, “Heterogeneous blockchain and AI-driven hierarchical
trust evaluation for 5G-enabled intelligent transportation sys-
tems,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 24, no. 2, pp. 2074–2083, 2023.

[2] N. Maisonneuve, M. Stevens, M. Niessen, and L. Steels,
“Noisetube: measuring and mapping noise pollution with
mobile phones,” in Information Technologies in Environmen-
tal Engineering, pp. 215–228, Springer Berlin Heidelberg, Ber-
lin, Heidelberg, 2009.

[3] B. Guo, H. Chen, Z. Yu, X. Xie, S. Huangfu, and D. Zhang,
“FlierMeet: a mobile crowdsensing system for cross-space pub-
lic information reposting, tagging, and sharing,” IEEE Transac-
tions onMobile Computing, vol. 14, no. 10, pp. 2020–2033, 2015.

[4] S. Reddy, K. Shilton, J. Burke, D. Estrin, M. Hansen, and
M. Srivastava, “Using context annotated mobility profiles to
recruit data collectors in participatory sensing,” in Location
and Context Awareness, pp. 52–69, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[5] G. Cardone, L. Foschini, P. Bellavista et al., “Fostering partici-
paction in smart cities: a geo-social crowdsensing platform,”
IEEE Communications Magazine, vol. 51, no. 6, pp. 112–119,
2013.

[6] M. Zhang, P. Yang, C. Tian et al., “Quality-aware sensing cov-
erage in budget-constrained mobile crowdsensing networks,”
IEEE Transactions on Vehicular Technology, vol. 65, no. 9,
pp. 7698–7707, 2016.

[7] S. Reddy, D. Estrin, and M. Srivastava, “Recruitment frame-
work for participatory sensing data collections,” in Pervasive
Computing: 8th International Conference, Pervasive 2010. Pro-
ceedings 8, pp. 138–155, Helsinki, Finland, 2010.

[8] L. Kazemi and C. Shahabi, “GeoCrowd: enabling query
answering with spatial crowdsourcing,” in Proceedings of the
20th International Conference on Advances in Geographic
Information Systems (SIGSPATIAL '12), pp. 189–198, New
York, NY, USA, November 2012.

[9] L. Kazemi, C. Shahabi, and L. Chen, “GeoTruCrowd: trust-
worthy query answering with spatial crowdsourcing,” in
Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems
(SIGSPATIAL'13), pp. 314–323, New York, NY, USA,
November 2013.

[10] P. Cheng, X. Lian, L. Chen, and C. Shahabi, “Prediction-based
task assignment in spatial crowdsourcing,” in 2017 IEEE 33rd
International Conference on Data Engineering (ICDE),
pp. 997–1008, San Diego, CA, USA, April 2017.

[11] P. Cheng, X. Lian, Z. Chen et al., “Reliable diversity-based spa-
tial crowdsourcing by moving workers,” Proceedings of the
VLDB Endowment, vol. 8, no. 10, pp. 1022–1033, 2015.

[12] H. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learn-
ing with double Q-learning,” in Proceedings of the thirtieth
AAAI conference on artificial intelligence (AAAI'16),
pp. 2094–2100, 2016, AAAI press.

[13] L. R. Ford and D. R. Fulkerson, “Maximal flow through a net-
work,” Canadian Journal of Mathematics, vol. 8, pp. 399–404,
1956.

[14] X. Zhang, Z. Yang, Y. Liu, J. Li, and Z. Ming, “Toward efficient
mechanisms for mobile crowdsensing,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 2, pp. 1760–1771, 2017.

[15] Y. Gong, C. Zhang, Y. Fang, and J. Sun, “Protecting location
privacy for task allocation in ad hoc mobile cloud computing,”
IEEE Transactions on Emerging Topics in Computing, vol. 6,
no. 1, pp. 110–121, 2018.

[16] Z. Liu, Z. Li, and K. Wu, “UniTask: a unified task assign-
ment design for mobile crowdsourcing-based urban sens-
ing,” IEEE Internet of Things Journal, vol. 6, no. 4,
pp. 6629–6641, 2019.

[17] M. Xiao, J. Wu, L. Huang, R. Cheng, and Y. Wang, “Online
task assignment for crowdsensing in predictable mobile social
networks,” IEEE Transactions on Mobile Computing, vol. 16,
no. 8, pp. 2306–2320, 2017.

[18] S. Yang, F. Wu, S. Tang et al., “Selecting most informative con-
tributors with unknown costs for budgeted crowdsensing,” in
2016 IEEE/ACM 24th International Symposium on Quality of
Service (IWQoS), pp. 1–6, Beijing, China, June 2016.

[19] Y. Liu, B. Guo, Y. Wang, W. Wu, Z. Yu, and D. Zhang,
“TaskMe: multi-task allocation in mobile crowd sensing,” Pro-
ceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing (UbiComp '16), 2016,
pp. 403–414, New York, NY, USA, September 2016.

[20] X. Zhang, Z. Yang, Y.-J. Gong, Y. Liu, and S. Tang, “SpatialRe-
cruiter: maximizing sensing coverage in selecting workers for
spatial crowdsourcing,” IEEE Transactions on Vehicular Tech-
nology, vol. 66, no. 6, pp. 5229–5240, 2017.

15Wireless Communications and Mobile Computing



[21] X. Zhang, Z. Yang, and Y. Liu, “Vehicle-based bi-objective
crowdsourcing,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 19, no. 10, pp. 3420–3428, 2018.

[22] M. Li, Y. Gao, M. Wang, C. Guo, and X. Tan, “Multi-objective
optimization for multi-task allocation in mobile crowd sens-
ing,” Procedia Computer Science, vol. 155, pp. 360–368, 2019.

[23] D. Zhang, H. Xiong, L. Wang, and G. Chen, “CrowdRecruiter:
selecting participants for piggyback crowdsensing under prob-
abilistic coverage constraint,” in Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp '14), pp. 703–714, New York, NY,
USA, September 2014.

[24] J. Ji, Y. Guo, D. Gong, and W. Tang, “MOEA/D-based partic-
ipant selection method for crowdsensing with social aware-
ness,” Applied Soft Computing, vol. 87, article 105981, 2020.

[25] Z. Song, C. H. Liu, J. Wu, J. Ma, and W. Wang, “QoI-aware
multitask-oriented dynamic participant selection with budget
constraints,” IEEE Transactions on Vehicular Technology,
vol. 63, no. 9, pp. 4618–4632, 2014.

[26] J. Wang, Y. Wang, D. Zhang et al., “Fine-grained multitask
allocation for participatory sensing with a shared budget,”
IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1395–1405,
2016.

[27] J. Wang, Y. Wang, D. Zhang, W. Feng, and L. Ma, “PSAlloca-
tor: multi-task allocation for participatory sensing with sens-
ing capability constraints,” in Proceedings of the 2017 ACM
Conference on Computer Supported Cooperative Work and
Social Computing (CSCW '17), pp. 1139–1151, New York,
NY, USA, February 2017.

[28] H. Shah-Mansouri and V. Wong, “Profit maximization in
mobile crowdsourcing: a truthful auction mechanism,” in
2015 IEEE International Conference on Communications
(ICC), pp. 3216–3221, London, UK, June 2015.

[29] C. Zhou, C.-K. Tham, and M. Motani, “QOATA: Qoi-aware
task allocation scheme for mobile crowdsensing under limited
budget,” in IEEE Tenth International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP),
pp. 1–6, 2015.

[30] M. H. Cheung, F. Hou, J. Huang, and R. Southwell, “Distrib-
uted time-sensitive task selection in mobile crowdsensing,”
IEEE Transactions on Mobile Computing, vol. 20, no. 6,
pp. 2172–2185, 2021.

[31] R. Estrada, R. Mizouni, H. Otrok, A. Ouali, and J. Bentahar, “A
crowd-sensing framework for allocation of time-constrained
and location-based tasks,” IEEE Transactions on Services Com-
puting, vol. 13, no. 5, pp. 769–785, 2020.

[32] J. Ji, Y. Guo, X. Gao, D. Gong, and Y.Wang, “Q-learning-based
hyperheuristic evolutionary algorithm for dynamic task alloca-
tion of crowdsensing,” IEEE Transactions on Cybernetics,
vol. 53, no. 4, pp. 2211–2224, 2023.

[33] S. Akter, T.-N. Dao, and S. Yoon, “Time-constrained task allo-
cation and worker routing in mobile crowd-sensing using a
decomposition technique and deep Q-learning,” IEEE Access,
vol. 9, pp. 95808–95822, 2021.

[34] X. Wang, M. Peng, H. Lin, Y. Wu, and X. Fan, “A privacy-
enhanced multiarea task allocation strategy for Healthcare
4.0,” IEEE Transactions on Industrial Informatics, vol. 19,
no. 3, pp. 2740–2748, 2023.

[35] X. Tao andW. Song, “Task allocation for mobile crowdsensing
with deep reinforcement learning,” in 2020 IEEE Wireless

Communications and Networking Conference (WCNC),
pp. 1–7, Seoul, Korea (South), May 2020.

[36] X. Wang, S. Garg, H. Lin, G. Kaddoum, J. Hu, and M. S. Hos-
sain, “A secure data aggregation strategy in edge computing
and blockchain-empowered Internet of Things,” IEEE Internet
of Things Journal, vol. 9, no. 16, pp. 14237–14246, 2022.

[37] J. Han, Z. Zhang, and X. Wu, “A real-world-oriented multi-
task allocation approach based on multi-agent reinforcement
learning in mobile crowd sensing,” Information, vol. 11,
no. 2, p. 101, 2020.

[38] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine
Learning, vol. 8, no. 3-4, pp. 279–292, 1992.

[39] Z. Wang, Z. Qin, X. Tang, J. Ye, and H. Zhu, “Deep reinforce-
ment learning with knowledge transfer for online rides order
dispatching,” in 2018 IEEE International Conference on Data
Mining (ICDM), pp. 617–626, Singapore, November 2018.

[40] Z. Ni, H. Liu, X. Zhu, Y. Zhao, and J. Ran, “Task allocation
strategy of spatial crowdsourcing based on deep reinforcement
learning,” Pattern Recognition and Artificial Intelligence,
vol. 34, no. 3, pp. 191–205, 2021.

[41] http://snap.stanford.edu/data/loc-Gowalla.html.

[42] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu, “Modeling user
activity preference by leveraging user spatial temporal charac-
teristics in LBSNs,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 45, no. 1, pp. 129–142, 2015.

[43] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal
algorithm for on-line bipartite matching,” in Proceedings of
the twenty-second annual ACM symposium on Theory of com-
puting, pp. 352–358, 1990.

16 Wireless Communications and Mobile Computing

http://snap.stanford.edu/data/loc-Gowalla.html

	Dynamic Task Assignment Framework for Mobile Crowdsensing with Deep Reinforcement Learning
	1. Introduction
	2. Related Work
	3. Model Description and Problem Definition
	4. Problem Solving
	4.1. Markov Decision Process Modeling from a Single Worker Perspective
	4.2. Offline Q Network Training Based on Improved DDQN
	4.3. A Dynamic Task Matching Strategy for Multiple Workers in Each Period
	4.4. MCS Dynamic Task Assignment Solution Framework

	5. Experimental and Analysis
	5.1. Experimental Dataset Selection and Processing
	5.2. Experimental Environment and Parameter Settings
	5.3. Evaluation of Q Network
	5.3.1. Parameter Selection of Training
	5.3.2. Q Network Train and Analysis

	5.4. Evaluation of Dynamic Task Assignment System Framework
	5.4.1. The Effect of Different Numbers of Workers on Task Assignment
	5.4.2. The Impact of Different Task Test Sets on Task Assignment
	5.4.3. The Effect of Different Perception Radius Dmax on Task Assignment


	6. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments



