
Research Article
RDF Subgraph Query Based on Common Subgraph in
Distributed Environment

Qingrong Huang, Xiaocong Lai, Qianxiang Su, and Ying Pan

School of Computer and Information Engineering, Nanning Normal University, Nanning 530001, China

Correspondence should be addressed to Ying Pan; panying@nnnu.edu.cn

Received 22 January 2022; Revised 9 November 2022; Accepted 16 November 2022; Published 13 January 2023

Academic Editor: Iftikhar Ahmad

Copyright © 2023 Qingrong Huang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the gradual development of the network, RDF graphs have become more and more complex as the scale of data increases;
how to perform more effective query for massive RDF graphs is a hot topic of continuous research. The traditional methods of
graph query and graph traversal produce great redundancy of intermediate results, and processing subgraph collection queries
in stand-alone mode cannot perform efficient matching when the amount of data is extremely large. Moreover, when
processing subgraph collection queries, it is necessary to iterate the query graph multiple times in the query of the common
subgraph, and the execution efficiency is not high. In response to the above problems, a distributed query strategy of RDF
subgraph set based on composite relation tree is proposed. Firstly, a corresponding composite relationship is established for
RDF subgraph set, then the composite relation graph is clipped, and the redundant nodes and edges of the composite relation
graph are deleted to obtain the composite relation tree. Finally, using the composite relation tree, a MapReduce-based RDF
subgraph set query method is proposed, which can use parallel in the computing environment, the distributed query batch
processing is performed on the RDF subgraph set, and the query result of the RDF subgraph set is obtained by traversing the
composite relation tree. The experimental results show that the algorithm proposed in this paper can improve the query
efficiency of RDF subgraph set.

1. Introduction

With the development of science and technology, more and
more data, such as those in the fields of chemistry and bio-
informatics, are described and processed in the form of
resource description framework (RDF), which is a graph-
based data model with strong expressiveness and simplicity
characteristics.

As a resource description framework for knowledge rep-
resentation and reasoning in the Semantic Web, RDF has
attracted the attention of many researchers. Researchers
usually use SPARQL Protocol and RDF Query Language
(SPARQL) to retrieve RDF data. The problem of RDF sub-
graph query refers to how to find part of the data graph that
matches the preset RDF subgraph in all RDF data graphs. At
present, most of the traditional methods are to process a sin-
gle RDF graph query sequentially.

With the release of a large amount of RDF data, the query
problem usually needs to batch process the RDF subgraph set.
For example, it is common in the Semantic Web to encounter
many problems withmultiple SPARQL queries that need to be
processed simultaneously, in which case the collection of RDF
subgraphs needs to be processed simultaneously. Because
there are many identical partial graphs in RDF subgraph set,
if each RDF graph is queried in turn, repeated traversal and
repeated computation will occur, which makes the query inef-
ficient and poor query performance.

In addition, using SPARQL to query large-scale RDF
data often exceeds the processing capacity of a single com-
puter. The core of large-scale RDF data query is to solve
how to carry out subgraph matching efficiently, and there
are two different directions to deal with subgraph matching:
one direction is to develop a special RDF query processing
engine using the characteristics of existing RDF data, and

Hindawi
Wireless Communications and Mobile Computing
Volume 2023, Article ID 7148071, 15 pages
https://doi.org/10.1155/2023/7148071

https://orcid.org/0000-0003-2442-3588
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7148071


the other direction is to develop an effective subgraph
matching algorithm. Therefore, the subgraph matching
method of distributed RDF graphs has attracted more and
more attention. In distributed RDF query processing, the
scale and complexity of RDF graphs are increasing, includ-
ing a large number of graph data nodes and their node attri-
butes, as well as the complex correlation between graph data
nodes. The amount of data is huge, and different informa-
tion sources make the form of data inconsistent. Moreover,
the combination of different forms of data will produce
many repeated and irrelevant intermediate result sets, and
there will also be many isomorphic relationships of sub-
graphs, which reduces the query efficiency when querying
RDF subgraphs.

In order to find an adaptive solution, which cannot only
solve the problem of repeated calculation in RDF subgraph
set query, but also effectively query large-scale RDF data, this
paper makes an in-depth study on RDF subgraph query
method and proposes a distributed query strategy of RDF sub-
graph set based on composite relation tree. The basic idea of
this query strategy is as follows. Firstly, a corresponding com-
posite relation graph is established for RDF subgraph set, and
the redundant nodes and edges of the composite relation
graph are deleted to obtain the composite relation tree. Then
using the composite relation tree, a MapReduce-based RDF
subgraph set query method is proposed, the distributed query
batch processing is performed on the RDF subgraph set, and
the query result of the RDF subgraph set is obtained by tra-
versing the composite relation tree.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the works relevant to our research. Section
3 gives the formal definition of RDF data model and RDF sub-
graph query. Section 4 introduces the construction of compos-
ite relation tree based on common subgraphs. Section 5
proposes a query algorithm based on MapReduce for RDF
subgraph set. Section 6 evaluates our method. Finally, Section
7 concludes the paper and outlines our future work.

2. Related Work

2.1. Query of RDF Subgraph Set. The research focus of RDF
subgraph set query is to design an efficient parallel execution
strategy of RDF subgraph set, and the optimization execu-
tion strategy includes two aspects: one is the optimization
of RDF subgraph query strategy and the other is the optimi-
zation of RDF subgraph query execution order [1]. In recent
years, the related research is as follows.

Yu et al. [2] proposed a multipattern graph optimization
algorithm, which used a compact tree-structured index to
represent the structural correlation among multiple patterns
and presented a dynamic update algorithm for fast insertion
and deletion of indexes to avoid rebuilding indexes from
scratch. At the same time, the execution sequence of depen-
dency tree was used to query the RDF subgraph set, thus
ultimately reducing the traversals of data graphs in the pro-
cess of query. Ren and Wang [3] proposed a method to
detect useful common subgraphs. This method defined the
concept of trivertex label sequence, which was used to repre-
sent the common subgraphs of two RDF schema graphs, and

then designed a novel grouping factor to divide the query
graph into several groups. In each group, an RDF schema
diagram containing mapping was established to represent
the subgraph isomorphism between RDF subgraphs. The
authors also used the heuristic algorithm to sort the execu-
tion sequence of RDF pattern graphs and effectively used
the intermediate results in reducing the intermediate cache.
Khan et al. [4] proposed a multidocument abstract summa-
rization method based on semantic graph and improved
sorting algorithm. Semantic graphs were constructed from
source documents, and graph nodes represented predicate
argument structures (PASs), the semantic structures of sen-
tences, which were automatically identified by semantic role
markers. Graph edges represented similarity weights, which
were calculated by semantic similarity of PASs. This method
used an improved graph node sorting algorithm and maxi-
mal marginal relevance to sort the important graph node
PASs to reduce redundant PASs. Wang et al. [5] adopted
the query rewriting and grouping methods to reduce the
number of queries and repeated calculations and established
an RDF storage index to quickly estimate the selection rate.

In addition to some of the studies mentioned above,
RDF subgraph queries are also a class of graph search that
can be applied to many scenarios through different forms
of optimization. For example, solving dynamic vehicle path
problems [6] and also rumor detection in different social
network analyses [7]. Moreover, when the method can be
applied to network searches, it can help to find the nodes
that cause Doppler shifts [8].

To sum up, the existing RDF subgraph set query
methods improve the query efficiency, but there are still
the following challenging technical problems: (1) how to
construct the combination relationship of RDF subgraph
set for reducing the traversal times in the query process?
(2) How to store the intermediate results to reduce resource
utilization and improve the utilization of intermediate
results in the query process? (3) How to design a suitable
query algorithm to match all the result sets of RDF sub-
graphs with less traversal times?

2.2. Distributed RDF Query. In addition, researchers at home
and abroad have done a lot of research on the key technolo-
gies of implementing RDF data query and processing system
applications on distributed platforms [9].

Wang et al. [10] proposed a query processor based on
StarMR (an efficient and scalable distributed algorithm
based on star decomposition) and used MapReduce to per-
form subgraph matching query on large RDF graph data,
then adopted two optimization strategies (postponing Carte-
sian products and filtering RDF property) to improve the
basic StarMR algorithm. Peng et al. [11] proposed a graph-
based distributed SPARQL query processing technology by
using two partial evaluations and assembly methods. Two
partial evaluation methods: one was to evaluate the cross-
matching and overlap of each RDF fragment in parallel,
and the other was to assemble these local segments through
two assembly strategies to calculate the cross-matching. Two
assembly methods (centralized and distributed assembly):
one was to send all local matches to a single assembly site,

2 Wireless Communications and Mobile Computing



and the other was to assemble a local match in multiple loca-
tions in parallel, which made the solution independent of
partition and minimized the number of vertices and edges
involved in the intermediate results. Wang et al. [12]
designed a query processor SDEC based on MapReduce
framework, which made use of the embedded semantics of
RDF graphs and decomposed RDF graphs into star sub-
graphs, and then gave the matching sequence, so as to
reduce the intermediate results in the matching process.
Moreover, the delay Cartesian product operation was used
to improve the performance of the basic algorithm. Wang
et al. [13] proposed a distributed Pregel-based method
DP2RPQ (Pregel-based parallel provenance-aware regular
path queries) to evaluate source-aware RPQ (regular path
query) on large RDF graphs. The method used Glushkoy
automatic machine to track the matching process in parallel,
then three optimization strategies were designed based on
the cost model: vertex calculation optimization, message
communication reduction, and count path mitigation, which
significantly reduced the intermediate results of the basic
DP2RPQ algorithm and overcame the count path problem
to a certain extent. Rathore et al. [14] proposed a parallel
processing system for large graphs based on Spark Streaming
and Spark with GraphX tools, which utilized cyber-physical
systems and sensor technology for continuous monitoring
and mining of data in big cities. The system adopted a
graph-oriented method and implemented big data process-
ing in single node, dual-node Hadoop, and Spark server
environments. Xu and Zhang [15] proposed a Spark-based
RDF query architecture, which was studied on the basis of
semantic connection set (SCS). The proposed architecture
adopted the repartitioning mechanism of class data based
on the vertical partition, which could reduce memory over-
head and consume index data. Um et al. [16] designed
RDF storage scheme, batch loading algorithm, and query
processing technology for fast searching billions of triples.
The storage scheme provided all triples patterns and tables
for each predicate for fast searching. The batch loading algo-
rithm converted the triples into encoded data, and used the
MapReduce framework to load billions of triples. Although
the experimental results have shown that it can effectively
process billions of times the data, it was found that the
encoding step required a very high disk I/O and time con-
sumption. Guo et al. [17] proposed a memory distributed
framework Leon+ to solve the RPQ problem in the knowl-
edge graph environment. Leon+ utilized the connection
pruning through a novel RDF digest technology and path
partitioning strategy, thus reducing search space and instal-
lation communication costs. The authors also developed a
subtle cost model for query planning to achieve the effi-
ciency of a complex RPQ. Xu et al. [18] proposed a new dis-
tributed subgraph matching method SP-Tree, which used
the Pregel model to effectively solve the problem of subgraph
matching of large RDF graph data. In addition, two optimi-
zation techniques were proposed to improve the efficiency of
the algorithm, one using RDF shapes to filter the locally
computed and transmitted messages, and the other delaying
the Cartesian product operations during the matching pro-
cess to reduce intermediate results.

To sum up, although the subgraph query of RDF graph
data has made a lot of achievements, it is still necessary to
further study the query optimization method in distributed
environment to search large-scale RDF graph data effi-
ciently, in particular, when dealing with distributed graph
data, the current methods have too much intermediate data
cache and limited utilization of intermediate data [19].
Therefore, more graph structure and knowledge semantic
information should be taken as the partition standard to
conduct a more detailed study on graph partition algorithm
[20], and the frontier research schemes of computing in dis-
tributed environment should be introduced into the field of
RDF data processing to better realize the fast query of sub-
graph data [21, 22]. In order to solve the problem above, this
paper decomposes the subgraph and formulates the query
order of the decomposed graph and effectively uses the
graph structure information and tree-level relationship to
reduce the intermediate results, thus improving the query
efficiency.

3. RDF Data Model and RDF Subgraph Query

RDF is a kind of data framework that can describe resource
information accurately, and it is designed to promote data
integration and distribution on Semantic Web. RDF is essen-
tially a graph-based data model, which is specially researched
by World Wide Web Consortium (W3C) to express resource
information and exchange resource data. RDF data model
and its query model are introduced as follows.

Definition 1 (RDF triples). RDF triples are statements, the
format of each RDF triple is (s, p, and o), where s is a subject,
o is an object, p is a predicate that describes the connection
between resource s and resource o, and (s, p, and o) represent
that resource s has an attribute p and its value is o. One RDF
triple can be abstracted as a directed graph, where the sub-
ject and object are nodes, and the predicate is their edge.

Definition 2 (SPARQL query). The common type of
SPARQL query statement can be simply described as Q
= SELECT TY WHERECX , where CX is the description
of the result, and TY is a set of triple patterns. The subject
s, predicate p, and object o of each triple pattern (s, p, and
o) can be represented as variables or constants. In a given
RDF data graph G, the triples of subgraphs are searched,
and each subgraph is mapped to the nodes and edges of
G through the schema variables in CX , so as to get the
desired result TY .

Definition 3 (RDF data graph). RDF data graph G is com-
posed of multiple RDF triples, G = ðVG, EG, LG, lGÞ, where
VG represents the node set of G, EG represents the edge set
of G, LG represents the label mapping set of VG, and lG rep-
resents the label mapping function of VG ⟶ LG, which cor-
responds any node in VG to the label in LG.

Definition 4 (RDF subgraph). Every RDF graph that needs to
be queried, and matched can be regarded as an RDF sub-
graph d, d ∈G, and d = ðVd , Ed , Ld , ldÞ, where Vd represents

3Wireless Communications and Mobile Computing



the node set of d, Ed represents the edge set of d, Ld repre-
sents the label mapping set of Vd , and ld represents the label
mapping function of Vd ⟶ Ld , which corresponds any
node in Vd to the label in Ld .

Definition 5 (Subgraph matching). Given a data graph g =
ðVg, Eg, Lg, lgÞ and an RDF subgraph di = ðVdi, Edi, Ldi, ldiÞ,
there exists a bijective function f : Vdi ⟶Vg from di to g,
which meets the following conditions:

(1) ∀v ∈ Vdi and f ðvÞ ∈ Vg, such that lg ð f ðvÞÞ ∈ ldi
(2) ∀ðk, vÞ ∈ Edi, f ð f ðvÞ and f ðkÞÞ ∈ Eg, such that lgð f ð

vÞ, f ðkÞÞ ∈ ldi
That is, di matches g, which is denoted as di ⊆ g.

RDF subgraph matching is a basic query type in RDF
graph data management, which is an NP-complete problem.

Definition 6 (RDF subgraph set). RDF subgraph set, denoted
as D = fd1, d2,⋯, dig is the set of multiple RDF subgraphs
that need to be queried in the data graph G.

Definition 7 (Query of RDF subgraph set). Given a data
graph G and an RDF subgraph set D = fd1, d2,⋯, dig, for
any RDF subgraph di ∈D, the query of RDF subgraph set
is to search for all data subgraphs in G that match to di
according to the set execution order.

Generally, RDF subgraph query only needs to get the
result set of one RDF subgraph each time, while the query
of RDF subgraph set needs to get the result set of RDF sub-
graph set at the same time, so the query of RDF subgraph set
is an extension of RDF subgraph query. The detailed nota-
tion and meaning are shown in Table 1.

For example, an RDF subgraph set D = fd1, d2, d3, d4,
d5g as shown in Figure 1, where A-G represent the nodes
of the subgraphs, and E1-E8 represent the edges of the
subgraphs. It is important to note that these RDF graphs
have many duplicates, such as multiple identical nodes
or edges between d1 and d5, and according to Definition
5, d1 ⊆ d3.

4. Construction of Composite Relation Tree
Based on Common Subgraphs

4.1. Definition and Function of Composite Relation Tree.
There are usually common subgraphs in the RDF sub-
graph set, which leads to a large number of repeated cal-
culations in the subgraph query process. Therefore, how
to solve the problem of repeated calculations in the pro-
cess of RDF subgraph set query is the research focus. In
order to deal with this problem, we use the common sub-
graphs to construct the composite relation tree, which
describes the composite relationship of the RDF subgraph
set, and we finally traverse the composite relation tree to

reduce the repeated calculation of queries. Related con-
cepts are introduced as follows.

Definition 8 (Composite relation). Composite relation repre-
sents the matching relation between RDF subgraphs or the
inclusion relation extracted from the common subgraphs
among RDF subgraphs.

Definition 9 (Composite relation graph). Composite relation
graph describes the composite relation of the RDF subgraph
set, where the nodes represent the RDF subgraph in the RDF
subgraph set, and the directed edges represent the composite
relationship among the subgraphs.

Definition 10 (Composite relation tree). Composite relation
tree is a binary tree obtained by cutting the redundant nodes
and edges of composite relation graph.

In order to facilitate the understanding of Definitions 8–10,
we give the following examples. In Figure 1, the RDF subgraph
d1 is isomorphic to the subgraph d3, that is, d1 ⊆ d3, then the
subgraph d1 has a compound relationship with the subgraph
d3. Figure 2 is a composite relation graph, in which subgraphs
d1 and d3 are represented by nodes, and the edge connecting
subgraphs d1 and d3 represent the composite relation between
subgraphs d1 and d3. The compound relation tree is shown in
Figure 3, which is a binary tree obtained by cutting redundant
nodes and edges of the compound relation graph.

4.2. Construction of Composite Relation Graph. In order to
mine the possible composite relation in RDF subgraph set,
this paper uses the maximum common subgraph to find
the composite relation between any two RDF subgraphs in
the subgraph set, and in order to better express the

Table 1: Notations and meanings.

Notations Meanings

Q = SELECT TY WHERECX
A common type of SPARQL

query statement

G = VG, EG, LG, lGð Þ An RDF data graph

D = d1, d2,⋯, dif g A query graph, which is a
subgraph of G

d = Vd , Ed , Ld , ldð Þ An RDF subgraph set

Exit (di ) An existence probability

Grade (eij )
A grade of the edges in a
composite relational graph

Udi

An evaluation value of the
node di in the composite

relation graph

M vð Þ An adjacency table

Ω dj

� �
An intermediate result set

R = S1, S2, ⋯ , St
� �

A star decomposition queue

Ω Stð Þ A matching result

D1 A composite relation tree

4 Wireless Communications and Mobile Computing



compound relationship between RDF subgraphs, the rela-
tionship between RDF subgraphs is expressed in the form
of a directed graph. In this way, not only the composite rela-
tion between RDF subgraphs in the set can be more intui-
tively expressed, but also the relationship between RDF
subgraphs in the set can be more hierarchical. The basic idea
of constructing composite relation graph is as follows: firstly,
the maximum common subgraph algorithm is used to find
the subgraph matching of RDF subgraph set. If there is sub-
graph matching in RDF subgraph set, then the composite
relation between corresponding subgraphs is constructed.
If there is no subgraph matching in the RDF subgraph set,

then the composite relation between the RDF subgraphs
and the common subgraphs is constructed.

The process of constructing composite relation graph of
RDF subgraph set is as follows:

(1) The maximum common subgraph between sub-
graphs in RDF subgraph set is solved

(2) For two RDF subgraphs di and dj, if their relation-
ship is a subgraph matching relationship (such as

A

B G

C D

E1 E5

E2

E6

d1

H

B

C E F

E8

E2 E5
E4

d2

C F

B

H A

G

E

D J

E8
E1

E5

E2
E4

E3

E7

E6 E9 E10

d3

C F

B

H A

G

E

D J

E8
E1

E5

E2
E4

E3

E7

E6 E10

d4

A

B G

F C

E1 E5

E4

E7

E2

d5

Figure 1: RDF subgraph set D = fd1, d2, d3, d4, d5g.

U10

U11 U12 U13
U14

U15

d9

d6

d1 d2 d5

d4d3

d7 d8

U1 U3

U4
U5

U8
U9

U2

U6
U7

Figure 2: Composite relation graph.

U10
U11

d9

d6 d8

d1 d2 d5

d3 d4

U1 U3

U4
U5 U9

Figure 3: Composite relation tree.

5Wireless Communications and Mobile Computing



di ⊆ dj), then an edge from di to dj is established
between them. If di and dj have the maximum com-
mon subgraph q, two edges pointing from q to di and
dj are established, and q is represented by the dotted-
line node in the composite relation graph. Then, q is
added to the set of RDF subgraphs

(3) For the maximum common subgraphs added into
the subgraph set, continue to solve the maximum
common subgraph between them, and repeat step
(2)

(4) Repeat the operation of step (3) for the maximum
common subgraph obtained in each round until
the number of the maximum common subgraphs
added to the RDF subgraph set in one round is
one, then the construction of the composite relation
graph is completed

For example, the composite relation graph for the RDF
subgraph set shown in Figure 1 is constructed. Firstly, the
maximum common subgraphs in the subgraph set are
obtained, as shown in Figure 4. Then the composite relation
graph shown in Figure 2 is constructed by steps (2)–(4),
where the solid-line node (such as node d3) represents the
subgraph existing in the RDF subgraph set, the dotted-line
node (such as node d9) represents the maximum common
subgraph added to the subgraph set, and the edge represents
the matching relationship between the two subgraph nodes,
such as d1 ⊆ d3.

4.3. Pruning of Composite Relation Graph. In order to sim-
plify the composite relation graph, we use the clipping strategy
to cut the redundant common subgraphs in the composite
relation graph to get the composite relation tree. The main
process is divided into two steps: one is to prune the nodes
of the composite relation graph, and the other is to prune
the edges of the composite relation graph. The relevant defini-
tions of the clipping strategy are introduced as follows:

Definition 11 (Difference of two subgraphs). Given two RDF
subgraphs da and db and da ⊆ db, then the difference of db
minus da, denoted as Rba′ , is the nodes and edges of the
remaining part of db after removing da The set of these
remaining nodes is denoted as Vba′ , and the set of remaining
edges is denoted as Eba′ .

Definition 12 (Grade of edges). The grade of edges in the
composite relation graph is denoted as gradeðeijÞ, which is
calculated as follows:

grade eij
� �

= ∂ ×V Rji′
� �

+ λ × E Rji′
� �

, ð1Þ

where eij is a directed edge from di to dj, VðRji′Þ and EðRji′Þ
represent the number of nodes and edges, respectively. ∂
represents the frequency of the remaining node set V ji′ in

the data graph, ∂ = ðnumber of timesV ji′ appears in the data
graphÞ/ðtotal number of nodes in the data graphÞ, and ∂ ∈ ½0
, 1�. λ represents the frequency of the remaining edge set
Eji′ in the data graph, λ = ðnumber of times Eji′ appears in the
data graphÞ/ðtotal number of edges in the data graphÞ, and ∈
½0, 1�λ.

Definition 13 (Existence probability). Existence probability is
used to represent the probability that the triples (s, p, and o)
in the data graph matching the subgraph node di. It is calcu-
lated as follows:

exit dið Þ = dnum s, p, oð Þ
Gnum s, p, oð Þ , ð2Þ

where dnum represents the number of triples containing di in
the data graph, Gnum represents the number of all triples in
the data graph, and the value range of existence probability
is [0, 1].

Definition 14 (Evaluation value of node). The evaluation
value of the node di in the composite relation graph is
denoted as Udi, which is calculated as follows:

Udi = exit dið Þ × 〠
k

j=1
grade eij

� �
, ð3Þ

where k is the number of in-degree edges of di.

The main steps of clipping composite relation graph are
as follows:

(1) Determine the subgraph nodes that can be pruned.
Because the dotted-line nodes in the composite

A

B G

C

E1 E5

E 2

B

C F

E1 E4

B

C

E2

B

C E

E2 E3

d6 d7
d8

d9

Figure 4: Maximum common subgraphs corresponding to RDF subgraph set in Figure 1.

6 Wireless Communications and Mobile Computing



relation graph are the public subgraphs, so the
dotted-line nodes and their edges need to be clipped
for simplifying the composite relation graph. The
dotted-line node can be clipped if it meets the fol-
lowing condition: both its out-degrees and the in-
degrees of its child nodes are greater than or equal
to 2. For example, in the composite relation graph
shown in Figure 2, the subgraph node d6 has two
out-degrees U4 and U5, and the child nodes con-
nected to the out-degree edges are d1 and d2. More-
over, the subgraph node d1 has two out-degrees U4
and U8, and d2 has two in-degrees U5 and U6.
Therefore, d6 meets the condition and is determined
as a prunable node. Similarly, d7 and d8 are also the
prunable nodes

(2) Prune the subgraph nodes. The subgraph node with
zero out-degree is found from the bottom of the
composite relation graph, and the graph is traversed
upward. If only one subgraph node in the same layer
is a prunable subgraph node, this node and its con-
nected edges are pruned. If there are multiple prun-
able subgraph nodes in the same layer, we need to
compare the evaluation values of these subgraph
nodes, and the node with the highest value is first
pruned until there is no prunable subgraph node in
this layer. Repeat the above pruning process until
there are no prunable subgraph nodes in the com-
posite relation graph, and then stop pruning the sub-
graph nodes

For example, it can be observed from Figure 2 that d6, d7
, and d8 are the subgraph nodes that can be clipped, and they
are in the same layer. Therefore, compare the evaluation
values of these subgraph nodes and crop the subgraph nodes
with larger values first. Assuming that ∂ is 0.3, λ is 0.1, and
the existence probability of the subgraph nodes is the same.
According to Equation (3), Ud6, Ud7 and Ud8 can be calcu-
lated as: Ud6 =U4 +U5 = 1:2, Ud7 =U6 +U7 = 1:7, and Ud8
=U8 +U9 = 1:3, so d7 and its connected edges are clipped
first, and again, we determine whether there are multiple
prunable subgraph nodes in the same layer, and do the
prune process until there are no prunable subgraph nodes.
Finally, we get the simplest composite relation graph as
shown in Figure 5.

(3) Prune the edges. For the subgraph nodes with multi-
ple in-degrees, we need to compare the grades of
their in-degree edges, which are calculated according
to Equation (1) and keep the edge with the smallest
value. If multiple edges have the same value, the exis-
tence probability of the upper layer nodes connected
with the in-degree edges are compared, and the in-
degree edge with low existence probability is
retained. The existence probability is calculated
according to Equation (2).

(4) Repeat steps (2) and (3) until each subgraph node
has only one in-degree edge, then a binary tree is
obtained, which is the composite relation tree

For example, in the simplest composite graph shown in
Figure 5, d1 has two in-degree edges U4 and U8, assuming
that ∂ is 0.3 and λ is 0.1, according to Equation (1), the grade
values of U4 and U8 are 0.4 and 0.8, respectively, so U4 with
the smallest value is retained, and U8 is cut; d3 has 3 in-
degree edges U10, U12, and U14, and their values are 1.4,
1.8, and 1.7, respectively. So, U10 with the smallest value is
retained, while U12 and U14 are cut. Similarly, the edges of
d4 are clipped. Finally, the composite relation tree shown
in Figure 3 can be obtained.

5. Query Algorithm Based on MapReduce for
RDF Subgraph Set

The RDF subgraph set query problem is mainly to solve the
problem of how to reduce the double calculation between
subgraphs. Therefore, this section proposes an algorithm,
composite relation tree query (CRTQ), for querying RDF
subgraph set using the composite relation tree in the
MapReduce environment.

MapReduce is a programming mode specially designed
for the parallel operation of various large-scale datasets.
“Map” and “reduce” are the two main basic ideas. Using
these ideas, it is very convenient for programmers to use
the distributed system to operate their own applications
independently.

The main idea of CRTQ algorithm is as follows. Firstly,
the data of the RDF subgraph collection is distributed and
stored in multiple tables, and these tables can be used to per-
form MapReduce calculations on the adjacency table of each
subject node at the same time. Then, each RDF subgraph in
the corresponding composite relation tree is traversed and
queried in the order of hierarchy. When traversing the query
subgraph, the subgraph is decomposed into a star shape, a
star-shaped decomposition queue is obtained, and SPARQL
query is performed under the operation of MapReduce. In
addition to the root subgraph node, other subgraph nodes
are queried in the intermediate result set of their parent

U10

U11 U12 U13
U14

U15

d9

d6

d1

d3 d4

d2 d5

d8

U1 U3

U4
U5 U8 U9

Figure 5: Simplest composite graph.

7Wireless Communications and Mobile Computing



CRTQ (D1, M(v))
Input: Composite relation tree D1, adjacency table M(v)
Output: Query result set Ω(T) = {Ω(d1), Ω(d2), …, Ω(dn)}
FOR EACH dj ∈D1

Ω1 =CALLSubgraphMatching (dj);
IF ∃dj.Leaf(v)∈ Ω1THENΩ(dj) =Ω1;
j++;
Ω(T) =Ω(dj)∪Ω(dj+1); //Get the matching result set of D1

END FOR
RETURNΩ(T);
FUNCTIONSubgraphMatching (dj)

IFdj=d.rootTHENR←CALLStarDecomposition (dj);
WHILER≠∅DO
t←1, St←R.dequeue;
CALLmap(∅, M(v));
IFt>1 THEN
CALLmap(∅, β); //β∈Ω(Pt−1)
Ω(dj) =CALLreduce(βkey , Ω(Pt−1), Ω(St)));
END IF(
t++;
END WHILE
ELSE
R←CALLStarDecomposition (dj);
WHILER≠∅DO
t←1, St←R.dequeue;
CALLmap(∅, Ω(dj .Parent)); //query dj in the result set of the parent graph
IFt>1 THEN
CALLmap(∅, β); //β∈Ω(Pt−1)
Ω(dj) =CALLreduce(βkey , (Ω(Pt−1), Ω(St)));
END IF
t++;
END WHILE
END IF

RETURNΩ(dj);
FUNCTIONmap(∅, M(v) or β)

IF input M(v) THEN
Ω(St)←CALLStarMatching (St , M(v));
IFt=1 THEN

β←Ω(S1);
RETURN (∅, β);

ELSE
FOR EACHβ∈Ω(St)

βkey = fðv′, βðv′ÞÞjv′ ∈VðPt−1Þ ∩VðStÞg; //get the matching result of fv′g as the key value

RETURN (βkey , β);

END FOR
END IF

ELSE
βkey = fðv′, βðv′ÞÞjv′ ∈VðPt−1Þ ∩VðStÞg;
RETURN (βkey , β); //the input value is Ω(Pt−1), the output is (βkey , β)

END IF
FUNCTIONreduce(βkey , (Ω(Pt−1), Ω(St)))

FOR EACHðβ, β′Þ⟵ fΩðPt−1Þ ×ΩðStÞg
RETURNΩðPtÞ⟵ β ∪ β′; //get the current matching result set Ω(Pt)

END FOR

Algorithm 1

8 Wireless Communications and Mobile Computing



subgraph in order, and the intermediate result set without
leaf subgraph node is filtered out in each query. In this
way, the generation of irrelevant results and intermediate
result sets during the query of the next layer of subgraphs
can be reduced, which can greatly reduce the operation of
repeated calculations. At the same time, the result set of all
the subgraphs in the tree can be obtained by traversing the
composite relation tree once.

The specific steps of CRTQ algorithm are as follows:

(1) Generate the corresponding composite relation tree
D1 of RDF subgraph set, use the adjacency tables
MðvÞ to store the data graph G, and use the adjacency
tables TðvÞ to store the tree D1. Where D1 = fd1, d2
,⋯, dng, n ∈ ½1, j�, and j is the number of RDF sub-
graphs in the composite relation tree

(2) Query the root subgraph d.root of D1 and match
d.root with G, filter the matching result set without
the leaf subgraph node dj:Leaf ðvÞ, and the result
set ΩðdjÞ obtained is the intermediate result set

(3) Traverse the next subgraph dj in the composite rela-
tion tree D1 according to the order of hierarchy and
perform star decomposition on the subgraph dj, then
obtain the star decomposition queue R = fS1, S2,⋯
, Stg, t ∈ ½1, s�, and s is the number of star decomposi-
tion of the subgraph dj

(4) Each subgraph dj performs query matching in the
intermediate result set of Ωðdj:ParentÞ which
obtained from the query of its parent graph d:Pa
rent. In each round of MapReduce, the Map func-
tion sequentially matches a star St in R on the
adjacency table of each node to obtain the match-
ing result ΩðStÞ

(5) The matching result set of the node intersection of
the local query subgraph Pt−1 and the star-shaped
St is used as the key βkey connecting Map and
Reduce. In the Reduce function, the matching result
ΩðPt−1Þ of the partial query subgraph Pt−1 obtained

in the last round is combined with the matching
result ΩðStÞ to obtain ΩðPtÞ

(6) Repeat steps (4) and (5) to get the matching result set
Ω1 of all stars in queue R, traverse the intermediate
result set Ω1, and filter the result set without leaf
subgraph node dj:Leaf ðvÞ to get ΩðdjÞ

(7) Continue to query the next layer of subgraphs, repeat
steps (3)-(6), until all the subgraphs dn of the com-
posite relation D1 have been queried

The main pseudocodes of CRTQ algorithm proposed in
this paper are as follows:

The time complexity of the CRTQ algorithm is OðVs∙
max Ns∙max MÞ. Where s is the number of stars, V is the
number of nodes in D1, max N is the maximum out-
degree of the node in G, and maxM is the maximum out-
degree of the subgraph node in D1. In the matching of s star
patterns, the maximum time consumption occurs when the
node in G has the maximum out-degree max N and the sub-
graph node in D1 has the maximum out-degree max M.
Although the subgraph set query method proposed in this
paper will cause a certain amount of time consumption in
the process of constructing a composite relation tree. How-
ever, the query method proposed in this paper can obtain
the query results of multiple RDF subgraphs by traversing
the composite relation tree, thus greatly reducing the query
time.

6. Evaluation

In this section, the experiments have been performed to
compare our CRTQ algorithm with other query algorithms
MPT [2], MQO [3], and CS-MQO [5] and to evaluate the
scalability of CRTQ when the data size changes and the clus-
ter points change.

6.1. Experimental Setup. The experiment was carried out on
a distributed cluster with six identical computing nodes,
each computing node is Intel (R) Core (TM) i7-
4720HQ@3.60GHz 8 core processor with 16GB memory
and 1T hard disk. 1000Mbps Ethernet was used for com-
munication between nodes. The development environment

Table 2: The main characteristics of datasets.

Datasets Number of nodes Number of edges Edge/node ratio

DBpedia2015A-1M 90512 270745 2.991

DBpedia2015A-25M 2005251 4010863 2.000

DBpedia2015A-50M 3860248 7450162 1.930

WatDiv-1M 132478 384015 2.899

WatDiv-50M 4342095 8074015 1.859

WatDiv-100M 9145251 24774138 2.709

LUBM-10M 404897 797108 1.969

LUBM-50M 4196332 8518821 2.030

LUBM-100M 8246487 17652144 2.141

9Wireless Communications and Mobile Computing



of the algorithm was Eclipse 2018 and Hadoop 2.7.4, and the
language used was Java, JDK1.8.

Three standard RDF datasets DBPedia2015A [23], Wat-
Div [24], and LUBM [25] were used in the experiment.
DBPedia2015A is a dataset about sports and sports events.
WatDiv is a dataset about e-commerce, which includes
information about users, retailers, and products. LUBM is
the data benchmark of Lehigh University, which contains
the relevant teaching information data of the university.
These datasets allow users to generate the datasets of differ-
ent scales according to their needs. We use the method
described in [26] to extract and expand the original datasets
and generate, respectively. 1M, 50M, and 100M RDF triples
of WatDiv; 1M, 25M, and 50M RDF triples of DBpe-
dia2015A; 10M, 50M, and 100M RDF triples of LUBM.
The main characteristics of these datasets are shown in
Table 2.

6.2. Comparison of Query Efficiency. RDF query subgraph
sets were generated by randomly selecting RDF subgraphs
in the datasets, and the composite relation trees of these sub-
graph sets were generated according to the method in Sec-

tion 4. These composite relation trees have a width of 5-11
and a depth of 5-11, respectively.

To compare the query efficiency of CRTQ algorithm
with MPT, MQO, and CS-MQO algorithms, we use six iden-
tical computing nodes (cluster nodes) and performed exper-
iments on DBPedia2015A-50M dataset and Watdiv-100M
dataset, respectively, under the condition of the same depth
and the different widths of the composite relation trees. For
the different width, each query is run 5 times, and the aver-
age query time is taken.

It can be seen from the experimental results shown in
Figure 6, with the increasing width of the composite relation
tree, the amount of data in the RDF graph is also increasing,
and the average query time of the four algorithms is con-
stantly increasing. Moreover, all the query time of CRTQ
algorithm is less than 250 s, and it can be seen that CRTQ
algorithm has the obvious advantages when the width of
the composite relation tree increases. In particular, when
the width of composite relation tree is 11, the average query
time of the CRTQ algorithm on three datasets is about 51%,
46%, and 40% higher than that of MPT, MQO, and CS-
MQO algorithms, respectively.

5 6 7 8 9 10 11
Widths

0

0.5

1

1.5

2

2.5

3

3.5
A

ve
ra

ge
 q

ue
ry

 ti
m

e (
10

0 
se

c)

CRTQ
MPT

MQO
CS-MQO

(a)

5 6 7 8 9 10 11
Widths

0
0.5

1
1.5

2
2.5

3.5
4

3

4.5

A
ve

ra
ge

 q
ue

ry
 ti

m
e (

10
0 

se
c)

CRTQ
MPT

MQO
CS-MQO

(b)

5 6 7 8 9 10 11
Widths

0
0.5

1
1.5

2
2.5

3.5
4

3

4.5
5

A
ve

ra
ge

 q
ue

ry
 ti

m
e (

10
0 

se
c)

CRTQ
MPT

MQO
CS-MQO

(c)

Figure 6: Query efficiency under different widths of composite relation trees. (a) DBpedia2015A-50M. (b) WatDiv-100M. (c) LUBM-
100M.

10 Wireless Communications and Mobile Computing



Similar to the above experiment, we compare the query
efficiency of these algorithms under the condition of the
same width and the different depths of composite relation
tree. The experimental results are shown in Figure 7.

From Figure 7, we can see that with the increasing depth
of the composite relation trees, the amount of data in the
RDF graph is also increasing, and the average query time
of the four algorithms is constantly increasing. Moreover,
all the average query time of CRTQ algorithm is less than
200 s, and it can be seen that CRTQ algorithm has the obvi-
ous advantages when the depth of the composite relation
tree increases. In particular, when the depth of composite
relation tree is 11, the average query time of CRTQ algo-
rithm on three datasets is about 54%, 50%, and 43% higher
than that of MPT, MQO, and CS-MQO algorithms,
respectively.

In addition to the above query efficiency comparison, we
also perform a graph preprocessing performance compari-
son. The experimental results are shown in Figure 8.

From Figure 8(a), we can see that the database precrea-
tion time for CRTQ and MQO is slightly higher than that
of the MPT algorithm for the three datasets during database

creation because CRTQ needs to generate composite associ-
ation trees and MQO needs to determine multipattern
matching sequences through mapping; while CS-MQO has
the longest precreation time because it needs to utilize verti-
cal storage and semantic clipping.

In addition, we can understand from Figure 8(b) that
CRTQ is the best in terms of cache space size, while the aver-
age cache space size required by CS-MQO and MPT is about
1.3-1.5 times that of CRTQ. This is because the CS-MQO
algorithm converts all queries into undirected connected
graphs, and the cost of finding common subgraphs among
multiple graphs is relatively high. While MPT is divided into
two steps, basic pattern matching and extended pattern
matching, and each time the set of matching results of basic
patterns is used as input for extended pattern matching, so
there is still a part of the data graph that needs to be traversed
several times, and its intermediate results need to be saved
each time, which greatly increases the space complexity.

6.3. Query Performance of Different Data Sizes. We compare
the query efficiency of CRTQ, MPT, MQO, and CS-MQO
algorithms under the following conditions: (1) the width/

0

0.5

1

1.5

2

2.5

3

3.5

5 6 7 8 9 10 11

Depths

Av
er

ag
e q

ue
ry

 ti
m

e (
10

0 
se

c)

CRTQ
MPT

MQO
CS-MQO

(a)

0
0.5

1
1.5

2
2.5

3.5
3

4.5
4

5 6 7 8 9 10 11

Depths

A
ve

ra
ge

 q
ue

ry
 ti

m
e (

10
0 

se
c)

CRTQ
MPT

MQO
CS-MQO

(b)

0

0.5

1

1.5

2

2.5

3.5

3

4

5 6 7 8 9 10 11

Depths

A
ve

ra
ge

 q
ue

ry
 ti

m
e (

10
0 

se
c)

CRTQ
MPT

MQO
CS-MQO

(c)

Figure 7: Query efficiency under different depths of composite relation trees. (a) DBpedia2015A-50M. (b) WatDiv-100M. (c) LUBM-
100M.

11Wireless Communications and Mobile Computing



depth of composite relation tree are the same; (2) the depth
of RDF query subgraph is the same and its range is 5-15; (3)
the number of computing nodes is 6; (4) the DBpedia2015A
dataset size increases from 1M to 50M, the size of WatDiv

dataset increases from 1M to 100M, and the size of LUBM
dataset increases from 10M to 100M.

From the experimental results shown in Figure 9, it can
be seen that the query time of the CRTQ algorithm proposed

DBpedia2015A-25M WatDiv-50M LUBM-100M

Dataset name

0
10
20
30
40
50
60
70
80
90

100

D
at

ab
as

e p
re

-c
re

at
io

n 
tim

e (
se

c)

CRTQ
MPT

MQO
CS-MQO

(a)

DBpedia2015A-25M WatDiv-50M LUBM-100M

Dataset name

0

50

100

150

200

250

A
ve

ra
ge

 ca
ch

e s
pa

ce
 si

ze
 o

f t
he

 d
at

a (
M

B)

CRTQ
MPT

MQO
CS-MQO

(b)

Figure 8: Preprocessing performance of graphs in datasets DBpedia2015A-50M, WatDiv-100M, and LUBM-100M.

1 M 25 M 50 M
Dataset sizes

0
0.5

1
1.5

2
2.5

3
3.5

4

A
ve

ra
ge

 q
ue

ry
 ti

m
e

(1
00

 se
c)

CRTQ
MPT

MQO
CS-MQO

(a)

1 M 50 M 100 M
Dataset sizes

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

A
ve

ra
ge

 q
ue

ry
 ti

m
e

(1
00

 se
c)

CRTQ
MPT

MQO
CS-MQO

(b)

10 M 50 M 100 M
Dataset sizes

0
0.5

1
1.5

2
2.5

3
3.5

4

A
ve

ra
ge

 q
ue

ry
 ti

m
e

(1
00

 se
c)

CRTQ
MPT

MQO
CS-MQO

(c)

Figure 9: Query time of different dataset sizes. (a) DBpedia2015A. (b) WatDiv. (c) LUBM.

12 Wireless Communications and Mobile Computing



in this paper is less than the others algorithms. With the
increase of data size, the query time of the four query algo-
rithms is increasing, but the increase of query time of
MPT, MQO, and CS-MQO is much larger than that of
CRTQ. Moreover, the increase of query time of CRTQ is
always in a relatively stable state with the increase of dataset.

In addition, from the experimental results of WatDiv
dataset shown in Figure 9, we get the following conclusion:
even if the RDF data structure of the WatDiv dataset is more
complex, when the WatDiv dataset size increases from 1M
to 100M, CRTQ algorithm can cope with the expansion of
data scale, and the change of query time is very stable. For
example, the query time of CRTQ algorithm only increases
from 65 s at 1M to 185 s at 100M, while the query time of
MPT increases from 78 s to 385 s, the query time of MQO
increases from 68 s to 353 s, and the query time of CS-
MQO increases from 69 s to 302 s.

6.4. Scalability Evaluation of the Algorithm. In this section,
the scalability of the four algorithms is evaluated by chang-
ing the number of computing nodes. The experimental
results are shown in Figure 10. As can be seen from
Figure 10, when the number of computing nodes increases

from 2 to 6, the query time of the four algorithms on the
datasets (DBpedia2015A-50M, WatDiv-100M, and
LUBM-100M) decreases and tends to stabilize. That is, the
larger the number of computing nodes, the higher the query
processing efficiency of the four algorithms. In addition,
compared with other algorithms, CRTQ algorithm has a
shorter query time and more effective scalability in distrib-
uted environment.

7. Conclusions and Future Work

In order to improve the query efficiency of RDF subgraphs
in massive RDF data graphs and solve the problem of
repeated calculation in the query process of RDF subgraph
set, a distributed query method of RDF subgraph set based
on composite relation tree is proposed in this paper. We first
construct a corresponding composite relation graph for RDF
subgraph set. To simplify the query process, we propose an
evaluation model that weighs the nodes and edges of com-
posite relation graph, and then removes the redundant
nodes and edges. We also propose a MapReduce-based
RDF subgraph set query method, which carries out the dis-
tributed query batch processing on the RDF subgraph set,

0
1
2
3
4
5
6
7
8
9

10

2 3 4 5 6

Number of computing nodes

Av
er

ag
e q

ue
ry

 ti
m

e (
10

0 
se

c)

CRTQ
MPT

MQC
CS-MQO

(a)

0

2

4

6

8

10

12

2 3 4 5 6

Number of computing nodes

Av
er

ag
e q

ue
ry

 ti
m

e (
10

0 
se

c)

CRTQ
MPT

MQC
CS-MQO

(b)

0

2

4

6

8

10

12

2 3 4 5 6

Number of computing nodes

Av
er

ag
e q

ue
ry

 ti
m

e (
10

0 
se

c)

CRTQ
MPT

MQC
CS-MQO

(c)

Figure 10: Query time for the different number of computing nodes. (a) DBpedia2015A-50M. (b) WatDiv-100M. (c) LUBM-100M.

13Wireless Communications and Mobile Computing



and we obtain the query results of the RDF subgraph set by
traversing the composite relation tree. Experiments show
that the work in this paper can improve the query efficiency
of RDF subgraph set.

In the future research, we can make the following
improvements: (1) further experiments on large real datasets
or further query research on datasets with fixed frequency
changes and updates; (2) the index of subgraph matching
order can be added to the composite relation tree, and the
number of subgraph traversal can be reduced to a certain
extent through the effective index method; (3) in the inter-
mediate result processing, in addition to star decomposition,
other improved graph structure decomposition methods can
be introduced, such as linear type and snowflake type.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

We declare that we have no conflict of interest.

Acknowledgments

This research was supported by the National Natural Science
Foundation of China under Grant Nos. 62267005 and
61862010, and the Guangxi Collaborative Innovation Center of
Multisource Information Integration and Intelligent Processing.

References

[1] M. Wylot, M. Hauswirth, P. Cudré-Mauroux, and S. Sakr,
“RDF data storage and query processing schemes,”ACMCom-
puting Surveys, vol. 51, no. 4, pp. 1–36, 2019.

[2] J. Yu, X. Liu, Y. Liu, and Y. Hu, “Multiple pattern graph corre-
lations for efficient graph pattern matching,” in Proceedings of
the IEEE/ACS 14th International Conference on Computer Sys-
tems and Applications, pp. 469–474, Hammamet, Tunisia, 2017.

[3] X. Ren and J. Wang, “Multi-query optimization for subgraph
isomorphism search,” Proceedings of the VLDB Endowment,
vol. 10, no. 3, pp. 121–132, 2016.

[4] A. Khan, N. Salim, H. Farman et al., “Abstractive text summa-
rization based on improved semantic graph approach,” Inter-
national Journal of Parallel Programming, vol. 46, no. 5,
pp. 992–1016, 2018.

[5] M. Wang, H. Fu, and F. Xu, “RDF multi-query optimization
algorithm for query rewriting using common subgraphs,” in
Proceedings of the 3rd International Conference on Computer
Science and Application Engineering, pp. 1–8, Sanya, China,
2019.

[6] A. Yavary and H. Sajedi, “Solving dynamic vehicle routing
problem with pickup and delivery by CLARITY method,” in
Proceedings of the 22nd International Conference on Intelligent
Engineering Systems (INES), pp. 207–212, Las Palmas de Gran
Canaria, Spain, June 2018.

[7] A. Yavary and H. Sajedi, “Rumor detection on Twitter using
extracted patterns from conversational tree,” in Proceedings
of the 4th International Conference on Web Research (ICWR),
pp. 78–85, Tehran, Iran, 2018.

[8] A. R. Nafchi, M. Esmaeili, A. Ghasempour, E. Hamke,
B. Santhanam, and R. Jordan, “Mitigating the time-
varying doppler shift in high-mobility wireless communica-
tions using multi-angle centered discrete fractional Fourier
transform,” in Proceedings of the 12th Annual Ubiquitous
Computing, Electronics & Mobile Communication Confer-
ence (UEMCON), pp. 607–612, New York, NY, USA,
December 2021.

[9] I. Abdelaziz, R. Harbi, Z. Khayyat, and P. Kalnis, “A survey and
experimental comparison of distributed SPARQL engines for
very large RDF data,” Proceedings of the VLDB Endowment,
vol. 10, no. 13, pp. 2049–2060, 2017.

[10] X.Wang, L. Chai, Q. Xu et al., “Efficient subgraph matching on
large RDF graphs using MapReduce,” Data Science and Engi-
neering, vol. 4, no. 1, pp. 24–43, 2019.

[11] P. Peng, L. Zou, M. T. Özsu, L. Chen, and D. Zhao, “Processing
SPARQL queries over distributed RDF graphs,” The VLDB
Journal, vol. 25, no. 2, pp. 243–268, 2016.

[12] X. Wang, Q. Xu, L. L. Chai, Y. J. Yang, and Y. P. Chai,
“Efficient distributed query processing on large scale RDF
graph data,” Journal of Software, vol. 30, no. 3, pp. 498–
514, 2019.

[13] X. Wang, S. Wang, Y. Xin, Y. Yang, J. Li, and X. Wang, “Dis-
tributed Pregel-based provenance-aware regular path query
processing on RDF knowledge graphs,” World Wide Web,
vol. 23, no. 3, pp. 1465–1496, 2020.

[14] M. M. Rathore, S. Attique Shah, A. Awad, D. Shukla, S. Vimal,
and A. Paul, “A cyber-physical system and graph-based
approach for transportation management in smart cities,” Sus-
tainability, vol. 13, no. 14, p. 7606, 2021.

[15] J. Xu and C. Zhang, “Semantic connection set-based massive
RDF data query processing in spark environment,” EURASIP
Journal on Wireless Communications and Networking,
vol. 2019, no. 1, 2019.

[16] J. H. Um, S. Lee, T. H. Kim, C. H. Jeong, S. K. Song, and
H. Jung, “Distributed RDF store for efficient searching billions
of triples based on Hadoop,” The Journal of Supercomputing,
vol. 72, no. 5, pp. 1825–1840, 2016.

[17] X. Guo, H. Gao, and Z. Zou, “Distributed processing of regular
path queries in RDF graphs,” Knowledge and Information Sys-
tems, vol. 63, no. 4, pp. 993–1027, 2021.

[18] Q. Xu, X. Wang, J. Li, Q. Zhang, and L. Chai, “Distributed sub-
graph matching on big knowledge graphs using Pregel,” IEEE
Access, vol. 7, pp. 116453–116464, 2019.

[19] C. Ranichandra and B. K. Tripathy, “Architecture for distrib-
uted query processing using the RDF data in cloud environ-
ment,” Evolutionary Intelligence, vol. 14, no. 2, pp. 567–575,
2021.

[20] A. Paul, “Graph based M2M optimization in an loT environ-
ment,” in Proceedings of the 2013 Research in adaptive and
convergent systems, pp. 45-46, Montreal, Quebec, Canada,
2013.

[21] M. M. U. Rathore, M. J. J. Gul, A. Paul et al., “Multilevel
graph-based decision making in big scholarly data: an
approach to identify expert reviewer, finding quality impact
factor, ranking journals and researchers,” IEEE Transactions
on Emerging Topics in Computing, vol. 9, no. 1, pp. 280–
292, 2021.

[22] R. Schroeder, R. R. M. Penteado, and C. S. Hara, “A data distri-
bution model for RDF,” Distributed and Parallel Databases,
vol. 39, no. 1, pp. 129–167, 2021.

14 Wireless Communications and Mobile Computing



[23] “DBpedia2015A [DB],” last accessed 2021/05/12, http://
downloads.dbpedia.org/2015-04.

[24] “WatDiv [DB],” last accessed 2021/05/12, http://dsg.uwaterloo
.ca/watdiv.

[25] “LUBM [DB],” http://swat.cse.lehigh.edu/projects/lubm.

[26] M. Spasić, M. Jovanovik, and A. Prat-Pérez, “An RDF dataset
generator for the social network benchmark with real-world
coherence,” in Proceedings of the Workshop on Benchmarking
Linked Data 2016, pp. 1–8, Kobe, Japan, 2016.

15Wireless Communications and Mobile Computing

http://downloads.dbpedia.org/2015-04
http://downloads.dbpedia.org/2015-04
http://dsg.uwaterloo.ca/watdiv
http://dsg.uwaterloo.ca/watdiv
http://swat.cse.lehigh.edu/projects/lubm

	RDF Subgraph Query Based on Common Subgraph in Distributed Environment
	1. Introduction
	2. Related Work
	2.1. Query of RDF Subgraph Set
	2.2. Distributed RDF Query

	3. RDF Data Model and RDF Subgraph Query
	4. Construction of Composite Relation Tree Based on Common Subgraphs
	4.1. Definition and Function of Composite Relation Tree
	4.2. Construction of Composite Relation Graph
	4.3. Pruning of Composite Relation Graph

	5. Query Algorithm Based on MapReduce for RDF Subgraph Set
	6. Evaluation
	6.1. Experimental Setup
	6.2. Comparison of Query Efficiency
	6.3. Query Performance of Different Data Sizes
	6.4. Scalability Evaluation of the Algorithm

	7. Conclusions and Future Work
	Data Availability
	Conflicts of Interest
	Acknowledgments



