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The intelligent imaging sensors in IoT benefit a lot from the continuous renewal of deep neural networks (DNNs). However, the
appearance of adversarial examples leads to skepticism about the trustworthiness of DNNs. Malicious perturbations, even
unperceivable for humans, lead to incapacitations of a DNN, bringing about the security problem in the information
integration of an IoT system. Adversarial example detection is an intuitive solution to judge if an input is malicious before
acceptance. However, the existing detection approaches, more or less, have some shortcomings like (1) modifying the network
structure, (2) extra training before deployment, and (3) requiring some prior knowledge about attacks. To address these
problems, this paper proposes a novel framework to filter out the adversarial perturbations by superimposing the original
images with the noises decorated by a new gradient-independent visualization method, namely, score class activation map
(Score-CAM). We propose to trim the Gaussian noises in a way with more explicit semantic meaning and stronger
explainability, which is different from the previous studies based on intuitive hypotheses or artificial denoisers. Our framework
requires no extra training and gradient calculation, which is friendly to embedded devices with only inference capabilities.
Extensive experiments demonstrate that the proposed framework is sufficiently general to detect a wide range of attacks and
apply it to different models.

1. Introduction

The continuous upgrading of DNNs provides an opportu-
nity to efficiently process the enormous unstructured data
generated by the wide-spreading imaging sensors in IoT sys-
tems [1, 2]. However, recent studies [3–5] have shown that
deep neural networks (DNNs) are vulnerable to adversarial
attacks, which apply subtle and unperceivable perturbations
to input examples and can completely fool the deep learning
model. According to different attack settings, adversarial
attacks have developed various types of attacks, such as
white-box attacks [6] and black-box attacks [7]. There are
also attacks targeting different application scenarios, such
as face recognition [8] and natural language processing [9].
Such attacks seriously threaten the success of deep learning
in practice. The defense of adversarial examples is now an
important and pressing problem.

According to the manipulation objects, we divide the
mainstream defense methods into three categories: (1)

enhancing the robustness of deep learning models by modi-
fying the model itself, (2) detecting adversarial examples by
independent widgets, and (3) removing the perturbations
in adversarial examples directly. Adversarial training [3,
10–12] is now the state-of-the-art approach targeting to
enhance the robustness of deep models. This method works
well in the situation with prior knowledge about attacks yet
could fail when facing unknown attacks. Moreover, attackers
could deliberately design examples targeting the enhanced
models [13, 14].

Some studies are aimed at detecting whether the example
is adversarial or not before accepting its prediction label. For
example, Tao et al. make a hypothesis that DNNs should
rely on human-perceivable attributes alone to make deci-
sions. Even if the invisible attributes play a key role in boost-
ing the DNNs’ accuracy, they are vulnerable to hostile
attacks. They propose an attribute-steered model only based
on human-perceptible attributes and utilize the prediction
inconsistency between the proposed model and the original
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one to detect adversarial examples [15]. The authors of NIC
[16] regard the detection problem as an anomaly detection
problem. They use the clean examples to train a one-class
support vector machine (OSVM) to detect adversarial exam-
ples. However, both of the two detection approaches need to
modify the network structure and retrain.

Other studies propose to build denoisers to deal with
adversarial attacks. The denoisers could filter out the adver-
sarial noises and work as a robustness-enhancing compo-
nent for the original deep model. But more often, this
approach is directly employed as an adversarial example
detector. Feature squeezing [17] is an intuitive denoising
method by squeezing the feature space of input images.
But the performance highly depends on the quality of the
designed squeezing method. MagNet [18] and HGD [19]
propose to train the denoiser composed of an encoder and
a decoder to remove the substantial adversarial noises in
the pictures. Nevertheless, this kind of method may reduce
the quality of input pictures, which lowers the accuracy of
deep learning models. Training is still another tricky prob-
lem. To train a reconstructed network is a skilful and time-
consuming task, especially for images with high resolution.

The development of explainable artificial intelligence
(XAI) [20, 21] provides an opportunity to reconsider the
problem of adversarial examples. Class activation map
(CAM) technology, a visualization method on DNN inter-
pretability, has achieved some positive results [22–26].
Whichever the attack method it is, the essential purpose is
to divert the model’s decision-making attention by adding
disturbance to the input, leading to wrong predictions. Since
the attack changes the provenance of the model’s decision-
making, the visualized interpretation of adversarial examples
must be different, more or less, from that corresponding to
the normal ones. Therefore, the deviation or derivation
thereof could be the critical information to spot malicious
examples. Wang and Gong use the features exacted from
multilayer saliency maps to train a binary classifier for dis-
cerning adversarial pictures [27]. This route requires the
acknowledgment of attacks, like adversarial training. Ye
et al. propose to directly superimpose the Grad-CAM onto
the original image in a specific ratio to mitigate the adversar-
ial perturbations [28]. Yet, the direct addition of Grad-CAM
and the original image essentially shifts the mean of pixels
and changes the brightness of pictures, resulting in an
unnecessary loss of accuracy. Moreover, Grad-CAM itself
also has problems such as false confidence and the need
for the back-propagation interface (a detailed discussion in
Section 3.1.2).

This paper takes the interpretable visualization as the
efficient representation of the deviation between adversarial
examples and benign and proposes a novel framework for
adversarial example detection. Based on our analysis of the
influence of malicious examples on the target model, Gauss-
ian white noise is decorated by CAM to generate the mask,
which is then superimposed on the original image to denoise
the adversarial perturbations. Compared to the state-of-the-
art denoiser conducted in [28] based on XAI, a more logical
and reasonable method is employed to generate the mask.
Besides, a superior CAM, namely, Score-CAM, is utilized

to capture the target model’s attention more accurately and
to tutor the decoration of Gaussian noise. Overall, the
advantages of the proposed framework can be summarized
as follows:

(1) Based on the derivation with explicit semantic mean-
ing, we directly use the random white noise decorated
by Score-CAM to eliminate adversarial features, mak-
ing the proposed framework more explainable

(2) Only inference is needed to compute the Score-
CAM, independent of the computation-intensive
back-propagation, making the proposed framework
friendly to the deploy environments such as intelli-
gent imaging sensors

(3) Since the detection results are determined by the
prediction inconsistency before and after denoising,
the framework can work as an independent compo-
nent without modifying the original DNN structure
or extra training

(4) The proposed framework is inspired by the common
characteristics of various adversarial attacks. It
applies to different attacks without extra data or prior
knowledge about attacks, which lowers the deploy-
ment costs and broadens the applicable scenarios

Extensive experiments are conducted over several repre-
sentative attack algorithms toward different DNN models.
The experimental results show that our approach can always
achieve the highest prediction accuracy and detection suc-
cess rate. The potential of applying XAI to solve complex
adversarial example detection problems is exhibited.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the related works about deep learning
interpretability and adversarial example detection. In Sec-
tion 3, the idea to design the detection framework is dis-
cussed, and then, the details of the proposed method are
brought out. Experiments in Section 4 verify the effective-
ness of the framework. Finally, Section 5 presents our con-
clusions and prospects.

2. Background and Related Works

2.1. Interpretability of Deep Learning. Deep learning has
achieved great success in many fields [2, 29]. Nevertheless,
the end-to-end learning method, which optimizes a large
number of parameters through the back-propagation of
losses, is similar to a “black box.” It means that deep learning
models lack transparency and interpretability. This is a sig-
nificant drawback in many applications, where the rationale
of models’ decisions is a requirement for trust. Although we
have built algorithms with extremely high accuracy, we can
only get model parameters with unclear meaning in the
end. In other words, the deep model itself contains knowl-
edge, but humans cannot understand it. We want to know
(in our way) what knowledge the model has learned from
the data to make the final decision. Hence, the interpretabil-
ity of deep learning is of great significance to artificial
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intelligence. On the one hand, it is an essential means to
evaluate the safety of artificial intelligence. On the other
hand, it is also conducive to accelerating the promotion of
artificial intelligence applications.

Zhou et al. proposed CAM [30], one of the most repre-
sentative interpretability approaches. CAM is essentially a
heat map that depicts the attention information of deep
learning models. They found that the weights of the classifi-
cation layer, i.e., the fully connected (FC) layer after the
global average pooling (GAP) layer, were highly correlative
to the corresponding categories. Therefore, they propose to
use the information contained in the GAP-based structure
to derive CAM. In their definition, CAM is the linear
weighted sum of the activation maps. For example, consider
the structure that an FC layer follows a GAP layer. Let Ak
denote the k-th channel of activations inputted to the GAP
layer. Wc denotes the weight vector of the last FC layer with
respect to class c, and its k-th element is represented by
Wc½k�. The CAM of class c is defined as

LcCAM =〠
k

αck Ak, ð1Þ

where

αck =Wc k½ �: ð2Þ

Based on the above definition, the calculation of CAM
depends on the specific structure of the FC and GAP layers.
Therefore, a deep model without a GAP layer needs to be
modified and retrained. Moreover, the last convolution layer
is generally of small size. The CAM must always be resized
to the same shape as the input image, leading to coarse spa-
tial information after interpolating.

Grad-CAM generalizes CAM to other models without
GAP layers. The core idea of Grad-CAM is to represent
the fusion weights, α, by gradients. Since the calculation of
gradient is independent to GAP layers, Grad-CAM is appli-
cable in any layer. Consider a convolution layer l and a class
of interest c. The prediction probability of class c is denoted
as Yc. Let Al denote the activations of layer l, while Al

k is the k
-th channel. The spatial shape of Al

k isw
l × hl, wherewl and hl

are, respectively, the width and height of the l-th layer in the
model. The Grad-CAM, denoted as LcGrad−CAM, is defined as

LcGrad−CAM = ReLU 〠
k

αckA
l
k

 !
, ð3Þ

where

αck =
∂Yc

∂Al
k:
: ð4Þ

The fusion weights αck are defined by the element-wise par-
tial derivatives of Yc with respect to Al

k. ReLU is adopted to
remove the negative values. Grad-CAM is applicable not only

for classification problems but also for other models in which
the activation function can be derived.

2.2. Adversarial Example Detection. The goal of adversarial
example detection is to judge if an input image is malicious.
On the basis of whether to modify the input examples, exist-
ing works can be divided into two categories: (1) statistics-
based and (2) denoiser-based.

2.2.1. Statistics-Based Approaches. Adversarial examples are
aimed at distorting the output of their target model. Since
a model commits decision divergence with high probability
when facing a malicious example, there must be a statistical
difference, in the example itself or the process of decision-
making, between adversarial examples and the corresponding
benign ones. The main idea of statistics-based approaches is to
design measurable metrics for the statistical differences
between adversarial and benign examples and make them as
significant as possible. However, this kind of method needs
some prior information, more or less. Nicolae et al. find that
the adversarial examples have more significant reconstruction
errors compared to the clean ones [31]. They take advantage of
CapsNet [32] to reconstruct the input image and train it with
L2 loss between the input and the reconstructed image. After
training, the reconstruction errors of most adversarial exam-
ples are more significant than a threshold. This method works
on MNIST, Fashion MNIST, and SVHN. However, for the
examples with a low distortion level, its result is not satisfac-
tory. NIC [16] treats the detection task as a one-class classifi-
cation (OCC) problem. It utilizes a one-class support vector
machine (OSVM) model to classify the input images. Addi-
tional classification layers connecting to the internal layers of
the original model are trained first to extract extra features,
with which theOSVM can be learned. Thismethod only needs
benign examples for training, requiring no information about
attack algorithms.

2.2.2. Denoiser-Based Approaches. The basic idea of
denoiser-based approaches is to filter out the possible adver-
sarial noise in the image, without destroying the original
semantic information. MagNet [18] uses a reconstruction
network to detect adversarial examples, which is similar to
[33]. The difference is that the reconstruction network is a
combination of an encoder and a decoder. After training
the reconstruction network, the reconstructed image and
the original image are simultaneously fed into the target
model. Then, the Jensen-Shannon divergence (JSD) between
the prediction logits of the two images is calculated. If the
JSD goes beyond a certain threshold, the input image is con-
sidered an adversarial example. The experimental results of
MagNet performed well on small sample size datasets, such
as MNIST and CIFAR-10. However, Russakovsky et al.
found that MagNet failed on ImageNet [34]. They propose
a high-level representation guided denoiser (HGD) [19] for
large images and achieve state-of-the-art results on Ima-
geNet. Xu et al. propose the state-of-the-art denoiser feature
squeezing [17]. The authors consider that the oversized
input feature space is redundant for image classification.
They propose to squeeze the feature space to reduce
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unnecessary information. Three methods are employed for
denoising: squeezing color bits, median smoothing, and
nonlocal smoothing. We believe that the essence of fea-
ture squeezing is to disrupt the original pixel distribution
with minimal destruction of the original semantic infor-
mation. However, the performance depends on artificially
designed filters. Ye et al. propose a detection framework
[28] based on Grad-CAM [22]. In [28], the Grad-CAM
of the input image is superimposed onto the input image
itself with a particular ratio to generate an emphasized
image IE :

IE = I + θ ∗ LcGrad−CAM: ð5Þ

I represents the input image and θ is a hyperpara-
meter. LcGrad−CAM is calculated by formula (3).

Then, the original input image and the emphasized
image are simultaneously fed into the same deep model
to compare their prediction labels. If the prediction results
are not the same, the original input image is considered
malicious.

3. Adversarial Example Detection

In this section, we first explore the problem of deep learning
models from the perspective of adversarial attack and
defense. Based on the discussion, the design philosophy of
our work is put forward. Then, the reasons why Score-
CAM is chosen are discussed. At last, the algorithm frame-
work and its running procedure are described.

3.1. Design Philosophy

3.1.1. Denoising Motivation. Noise in a specific range in
images usually has no harm to the performance of DNNs.
There are already mature skills to enhance the robustness
of DNN models, including data augmentation, transfer
learning, and dropout. A DNN model can be trained to work
well in various scenarios with different noise levels.

However, the situation is different for adversarial exam-
ples. One of the primary principles of attack methodology is
to impact the final output as much as possible by using the
slightest change to the input. The level of adversarial distor-
tion will accumulate along with the depth, which has been
proved by some previous studies [1, 17, 24, 26]. Slight as
the malicious perturbation is, adversarial examples are sensi-
tive to even low-level random noises.

Based on the above discussion, an instinctive idea is to
cover the perturbations with random noise. However,
superimposing the whole image by random noise with no
difference in intensity may cause unnecessary information
loss. Therefore, adding appropriate noise with the slightest
affection to the benign examples’ accuracy becomes the
key to the problem. CAM provides a superior solution for
this problem.

CAM is designed for deep learning interpretability, mak-
ing it a suitable tool to reflect the inside activation state. It
reveals the internal information of deep models by visualiza-
tion method. Given an input image and a class of interest,

CAM draws the heat map that indicates the contribution
of each area (in the input image) to the prediction score.
In other words, it reveals the spatial activation level of a cho-
sen layer. For an unsoiled picture, CAM correctly displays
the activation state w.r.t. the ground truth label. For a malig-
nant image that tutors the target model to make a wrong
classification decision, the deliberate alteration will change
the neurons’ activation mode in the target model. Based on
the mistakenly predicted class, CAM will capture the abnor-
mal activation of neurons and express it through the heat
map. Figure 1 shows the juxtapositions of CAMs from some
benign examples and their corresponding adversarial
examples. The visualization results before and after being
polluted by adversarial perturbations are displayed in three
groups: input images (Figures 1(a) and 1(b)), Grad-CAM
(Figures 1(c) and 1(d)), and Score-CAM (Figures 1(e) and
1(f)). It demonstrates that from the perspective of no matter
Grad-CAM or Score-CAM, the model’s interesting areas are
manipulated by the unperceivable modifications in the
input. For example, Figures 1(c) and 1(e) show that the
attention of the model is on the area of the main objects (a
boy in a go-kart) when the input is original images. But
adversarial noises switch the hot zone to the background
(Figures 1(d) and 1(f)). Hence, we can exploit the difference
of the intermediate information between the unstained and
the antagonistic examples to trim the random noise imposed
on the detected examples.

We propose to denoise the adversarial perturbations by
superimposing the input image with random noise weighted
by CAM in the spatial dimension. More specifically, a ran-
dom Gaussian noise matrix of the same size as the input
example is first generated. Afterward, the noise is dot prod-
uct with the CAM. Finally, the input image (not sure
whether clean) is covered by the noise edited by CAM. Con-
sequently, the region with a higher activation level is embed-
ded with higher-level noise after the above transformation.
For benign examples, noise covered in the interested area,
where the most potential features are located, may lead to
a partial loss of information. Nevertheless, the primary
semantic information cannot be wrecked if the noise level
is controlled to a certain level. The model can still take
advantage of the information in the denoised image to make
decisions. In contrast, if the input is a poisoned example, the
predicted class differs from the ground truth label. CAM will
draw the heat map based on the wrong class, where the acti-
vated area is different from the area with the wealthiest
semantic information. Hence, the edited noise trimmed by
the heat map may slightly affect the original area with
semantic information. But the distribution of the adversarial
perturbations could be distorted more severely. Meanwhile,
note that they are deliberately designed to be as small as
possible.

The first line in Figure 1 can be a more intuitive example
to explain our motivation. As depicted in Figure 1(e), Score-
CAM accurately sketches the bird’s contour that contains
the wealthiest semantic information. If the input is a clean
example (Figure 1(a)), the random noise will cover the bird’s
area in line with the result (Figure 1(e)). The decorated noise
only hinders the classification slightly based on the previous
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discussion. In contrast, as for the adversarial example
(Figure 1(b)), the attack algorithm switches the high-light
zone to the pixels of grassland (shown in Figure 1(f)).
When this contaminated example is fed into our frame-
work, the background region is full of emphasized Gaussian
noise. Nevertheless, the principal entity, a bird, is barely
influenced because we trim the noise’s value according to
the Score-CAM.

Section 3.2.1 will hand out a more detailed description of
the proposed detection framework.

3.1.2. Choice of CAM.Most methods for extracting CAM are
based on gradient. However, gradient-based methods have
flawed characteristics and disadvantages to reveal the real
attention of DNN models. First, for a DNN model with
dozens of layers, gradient vanishing caused by activation
functions cannot be ignored. For example, there is the
inconsistency of gradient caused by the flat zero-gradient
interval in the ReLU function, one of the most used acti-
vation functions. The inconsistency could bring about
high-frequency spatial noises while computing the output

gradient for an internal activation map. Second, the gradi-
ent is likely to conduct false confidence due to gradient
saturation. The area highlighted by the gradient does not
always contribute proportional confidence to the result.
This phenomenon is discovered by [26]. Last but not least,
most real-world deployment environments, e.g., edge com-
puting environments [35], cannot support the gradient
computation of deep models. Moreover, neural network
quantization is also widely utilized for deep model deploy-
ment, resulting in higher complexity and more significant
error in computing gradient. The above facts mean that
gradient-based techniques, like Grad-CAM, are not univer-
sally applicable.

Score-CAM [26] adopts gradient-free method to design
the fusion weights, i.e., α. It introduces the concept of
channel-wise increase of confidence (CIC) to measure the
importance of the activation map in each channel. It utilizes
the image masked by the activation in each channel to com-
pute CIC. The linear sum of activations weighted by CIC is
further calculated. Given a DNN model and a class of inter-
est c, the function Yc = f ðXÞ takes an image X and outputs a

(a) (b) (c) (d) (e) (f)

Figure 1: Visualization results: (a) original image; (b) adversarial example; (c) original Grad-CAM; (d) adversarial Grad-CAM; (e) original
Score-CAM; (f) adversarial Score-CAM.
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scalar Yc that represents the output probability for class c.
Let Al denote the activation of the l-th convolutional layer,
and Al

k denotes the k-th channel of Al. The Score-CAM of
class c is formulated by two steps:

(1) Computing CIC

Considering a known baseline input Xb, the contribution
of Al

k towards Y
c is defined as

C Al
k

� �
= f X ·Hl

k

� �
− f Xbð Þ, ð6Þ

where

Hl
k = norm Up Al

k

� �� �
: ð7Þ

In this paper, Xb is a zero matrix with the same size of X.
UpðAl

kÞ denotes upsampling Al
k to the same spatial size as

original input X. norm ð∙Þ is a min-max normalization func-
tion that limits the raw activation values in ½0, 1�.

(2) Computing Score-CAM

In the process of calculating Score-CAM, CðAl
kÞ is the

weighted mask for k-th channel. By applying the weighted
masks to the original activation maps, we can get the
Score-CAM:

LcScore−CAM = ReLU 〠
k

C Al
k

� �
·Al

k

 !
: ð8Þ

The ReLU function is used for the disturbance of irrele-
vant pixels on the activation map.

In the experiments conducted by [26], Score-CAM per-
forms better than Grad-CAM [22] and Grad-CAM++ [23]
in no matter the visualization of the heat map or the quan-
titative evaluation. The visualized results of these two CAM
methods are depicted in Figure 1. Figures 1(c) and 1(e),
respectively, show the results of Grad-CAM and Score-
CAM. Score-CAM can always highlight the main objects
and suppress the noise in the background area, while
Grad-CAM obtains the inaccurately activated heat map on
most occasions. Combining the above analysis, we believe
that Score-CAM can play a better role than the methods
based on the gradient in the adversarial defense.

3.2. Detection Framework Design

3.2.1. Detecting the Adversarial Examples. At present, we
have obtained the activated map containing the attention
information of the model. The next question is how to use
this information to distinguish out the vicious examples.

Our approach is to denoise the adversarial perturbations
with decorated noise. We depict the detection framework in
Figure 2.

The computation process of the denoised image I∗ from
an original image I can be formulated as:

I∗ = I +N · LcScore−CAM: ð9Þ

First, we generate a noise matrix N with the same shape
as I. Then, we compute the weighted noise by dot-
multiplying the noise matrix N and the Score-CAM of I
w.r.t. the class of interest c, i.e., LcScore−CAM. In this paper,
we adopt the class with the highest predicted probability as
the class of interest, and the Score-CAM is default resized
to the same shape as the input image and the noise matrix.
Last, the weighted noise and original image are added to
generate a new image I∗ called edited image. Here, we
directly trim the pixel values beyond [0,255]. We utilize ran-
dom Gaussian noises with zero mean value and an adjust-
able standard deviation σ.

This method introduces randomization to the defense
side to lower the possibility of being bypassed by targeted
malicious attacks. Besides, it does not shift the mean value
of the original pixels’ distribution and does not severely
degrade the prediction accuracy of the models.

The last part of the detection framework is the mecha-
nism of result determination. Based on the discussion in Sec-
tion 3.1, noise with a limited level only weakly affects the
recognition of the benign example. On the contrary, weak
noises can lead to the failure of adversarial perturbations
since they are designed to be as unperceivable and tiny as
possible. The prediction results of the original image I and
the edited image I∗ will be compared to judge if I is adver-
sarial. If the two images correspond to different prediction
labels, the original image I is determined an adversarial
example. On the contrary, consistent prediction of the two
images hints at a clean example.

3.2.2. Setup for Score-CAM. Different attack algorithms
behave differently in altering input pictures and manipulat-
ing cells. Some adversarial algorithms such as Linf attacks
limit the magnitude of changed pixels rather than pixel
numbers. Malicious examples tend to activate large numbers
of neurons abnormal to the actual labels. By accumulating a
considerable amount of tiny deviations, qualitative change
happens and the prediction label changes. On the contrary,
L0 attacks limit the number of pixels modified. They tend
to exploit a few amplifier paths and lead to a decisive change
in deeper layers. Most attacks exploit both aforementioned
ways, such as L2 attack, which constrains the total change
using the Euclidean distance to produce more unperceivable
perturbations. For both Linf and L0 attacks, the shallow
layers in the target model often do not accumulate signifi-
cant adversarial disturbances. The drastic changes may
occur in a deeper layer. Therefore, shallow layers are not
the ideal targets for extracting CAM in our work.

In the process of calculating Score-CAM, activation
maps are upsampled to the same spatial size as the input
image. After that, the resized activation maps will be used
as the mask onto the input image. However, it is a “first-
line therapy” to reduce the spatial size along the inference
direction when designing a convolution network. For
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example, the size of activation maps in the last convolution
layer of ResNet50 is 7∗7 while inputting an image with the
size of 224∗224. According to formula (8), the output size
of Score-CAM is dependent on the spatial size of the l-th
layer’s activation map. So, the size of Score-CAM is usually
smaller than the input image. However, the Score-CAM
will be resized to the shape of the input image according
to formula (9) by using the interpolation algorithm (near-
est-neighbor interpolation in our implementation). There-
fore, the spatial information is too coarse for extracting
Score-CAM if we use the activation map from the very
deep layers.

After the above discussion, we can conclude that the
layers in the middle of a model are most appropriate for
our framework. The specific layer names and the size of
the activation maps are listed in Table 1. We also conduct
an ablation experiment to verify our inference in Section 4.3.

4. Evaluation

In this section, we conduct experiments to evaluate the effec-
tiveness of the proposed detection framework.

4.1. Implementation Details

4.1.1. Dataset and Models. We conduct experiments on
ILSVRC2012 samples from ImageNet [34], one of the most
representative colored image datasets for computer vision
tasks. Several prevalent DNNs are chosen as the target
models, including ResNet50, ResNet101, DenseNet201,
Xception, and InceptionV3. They are recently the most pre-
vailing architectures and are used as backbone networks in
all kinds of computer vision tasks, such as face recognition,
semantic segmentation, and object detection. The pretrained
model weights and preprocessing API come from Keras.

Original imageScore-CAM

Random noise Weighted noise

+

Edited image⁎

Deep
model =

Original label

Edited label⁎

Benign

Adversarial

No

Yes

×

Figure 2: Detection framework based on Score-CAM-decorated noise.

Table 1: Details of target models.

Models
Attack success rate (%) Model accuracy

(%)
Layer name for

CAM
Activation
shapeBIM (Linf ) PGD (L2) PGD (L1) FGSM (Linf ) CW (Linf ) CW (L2)

ResNet50 93.34 92.28 91.07 93.19 90.32 92.05 68.08
conv3_block4_

out
28∗28∗512

ResNet101 92.05 89.76 88.70 93.19 91.42 88.70 69.98
conv3_block4_

out
28∗28∗512

DenseNet201 94.15 92.44 96.01 92.30 92.15 91.97 74.49 pool3_relu 28∗28∗512

Xception 91.83 90.76 90.63 89.75 94.78 92.50 77.52
block4_

sepconv2_act
37∗37∗728

InceptionV3 92.68 94.26 91.05 90.34 95.72 88.90 76.28 mixed2 35∗35∗288
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Eight-bit images are converted to float matrixes. Afterward,
the alterations in our experiments are directly conducted
on these matrixes with restricted values from 0 to 255.

4.1.2. Attack Setup. The adversarial examples are generated
based on the images which are correctly classified by the tar-
get models from ILSVRC2012-val. For each target model
and each attack algorithm, we select 500 successful adversar-
ial examples and the corresponding original images as the
test data.

In other words, every detection experiment is conducted
on a test set containing 500 benign examples and 500 corre-
sponding adversarial examples.

Our experiments are conducted with several representa-
tive white-box adversarial attack algorithms: FGSM [3], BIM
[36], PGD [10], and CW attacks [6]. Attacks with different
norms are also taken into consideration. In this paper, we
adopt untargeted attacks for our experiments.

Low-level disturbance for adversarial examples is one of
the development targets. To avoid generating coarse adver-
sarial image examples, we tune the hyperparameters of
attacks carefully and keep the attack success rate around
90%. We adopt the implementations from the ART library
[31]. The details of the attacks and target models are listed
in Table 1.

4.2. Adversarial Example Detection. Table 2 shows the exper-
imental results on adversarial example detection of the pro-
posed method (weighted noise (WN) with Score-CAM,
written as Score-CAM+WN for abbreviation) versus the
state-of-the-art method (emphasized image (EI) with
Grad-CAM, written as Grad-CAM+EI for abbreviation)
proposed by Ye et al. [28]. For the completeness of the
experiment, we also introduce two other ablation experi-
ments, i.e., Score-CAM+EI and Grad-CAM+WN. The
hyperparameter σ denotes the standard deviation of Gauss-

ian white noise employed only in WN, and θ is the propor-
tion of CAM emphasized to an image used only in EI.

For all the above methods, editing the input examples
disturbs the original pixel distributions, leading to accuracy
degradation on the original benign examples. This accuracy
is called Original Samples Prediction Accuracy (OSPA). In
our experiments, OSPA is 100% when the hyperparameter
σ or θ equals zero. It is because the chosen examples are
not edited at this time, and all of them can be correctly clas-
sified. OSPA will decrease along with the increase of σ or θ.
To fairly compare the effectiveness of different approaches,
OSPA is adjusted to 90% (±0.5%) for different experiments
by tuning σ or θ of the corresponding method.

The experiments consist of 30 groups: 6 attacks ∗ 5
models. The left-most column shows the attack name and
its norm type. For example, CW (L2) indicates the Carlini
and Wagner attack with L2 norm. The top row shows the
names of the six target models. We demonstrate three values
for each experiment: hyperparameter, adversarial example
accuracy (adversaries’ accuracy), and detection success rate
(success rate). The detection success rate is the percentage
of the examples with different prediction labels before and
after being edited in 500 adversarial examples. Adversarial
example accuracy is the prediction accuracy of adversarial
examples after being denoised.

Since random noises are introduced into the detection
framework, the results are not the same for each time.
Therefore, 10-fold testing is applied in the WN method.
For each experiment introducing random noises, the final
result is the average value of 10 times repeat.

As shown in Table 2, except for the FGSM attack, the
detection success rate of the proposed method reaches more
than 60% in most cases. When facing FGSM attacks, there is
a drop in the success rate. We believe that the FGSM attack
is relatively coarse. So greater distortion level (greater step
size) is needed to maintain the attack success rate of 90%.

Table 3: Defense performance comparison between layers.

Layer name
Activation
shape

BIM (Linf ) PGD (L2)
Hyperparameter

(σ)
Adversaries’
accuracy

Success
rate

Hyperparameter
(σ)

Adversaries’
accuracy

Success
rate

conv1_relu 112∗112∗64 33.28 47.97% 57.40% 25.82 45.80% 53.64%

conv2_block3_out 56∗56∗256 31.54 51.38% 59.67% 27.89 47.54% 55.28%

conv3_block4_out 28∗28∗512 31.86 53.28% 62.48% 30.83 50.80% 58.97%

conv4_block23_out 14∗14∗1024 23.67 50.24% 56.59% 22.24 50.38% 57.24%

conv5_block3_out 7∗7∗2048 26.14 37.97% 44.63% 19.95 38.06% 43.62%

Table 4: Comparison of different OSPA.

BIM (Linf ) PGD (L2)
Hyperparameter (σ) OSPA Adversaries’ accuracy Success rate Hyperparameter (σ) OSPA Adversaries’ accuracy Success rate

113.83 59.75% 51.60% 86.01% 113.73 60.00% 51.54% 85.38%

88.92 70.06% 57.18% 82.76% 83.96 70.06% 57.12% 82.18%

54.32 80.31% 61.96% 76.38% 51.42 80.13% 60.32% 73.46%

31.86 90.04% 53.28% 62.48% 30.83 89.94% 50.38% 58.97%

18.66 95.09% 36.69% 42.70% 19.00 94.87% 37.50% 42.12%
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To maintain the attack success rate of 90% in our experi-
ments, greater step size is adopted and higher-level distortion
is added. The decorated weighted noises with the same σ or θ
could not decompose the adversarial perturbations.

The very noticeable point is that the proposed method
(Score-CAM+WN) achieves a higher success rate than the
baseline (Grad-CAM+EI) in almost all the cases. Even in
the experiments where the proposed method has poorer per-
formance (CW (L2) and Xception), its gap to the best is
insignificant. It proves that the proposed method is more
sensitive to adversarial examples. Score-CAM always per-
forms better by comparing the results of the same CAM type
but the different superimposing methods. By comparing the
results of the same superimposing method but different
CAM types, WN always performs better. The data of adver-
sarial examples accuracy shows a similar pattern.

Considering that no training is carried out before
deployment, the proposed method achieves quite impressive
results. Furthermore, it works for different attacks and vari-
ous models, demonstrating its generality.

4.3. Choice of Layer. In this section, we validate the analysis
and discussion about different layers in Section 3.2.2. Activa-
tions from different layers are utilized to generate Score-
CAM. Furtherly, the images are edited by WN. ResNet101
is chosen as the target model. The adversarial examples are
produced by BIM (Linf ) and PGD (L2), as described in
Table 1. Five layers are picked out for this evaluation. Each
layer is the output of the last one in the bottleneck blocks
with the same shape. For example, there are four bottleneck
blocks with an output shape of 28∗28∗512: conv3_block1 to
conv3_block4, and conv3_block4 is the last one.

As shown in Table 3, conv3_block4_out with the output
shape of 28∗28∗512 performs best. The defense results rise first
and then descend along with the reduction of the spatial size.
It is fully in line with our previous analysis in Section 3.2.2.

Another noticeable phenomenon is that σ descends with
shrinking spatial size, in general. Since we keep the OSPA at
90% for all experiments, this phenomenon indicates that a
lower noise level is needed to maintain OSPA when using
Score-CAM with a smaller spatial size.

4.4. The Trade-Off between OSPA and Success Rate. In this
section, we provide a survey of the relationship between
OSPA and detection success rate. The adversarial examples
are still produced on ResNet101 by BIM (Linf ) and PGD
(L2). The attack configuration is the same as described in
Table 1. As shown in Table 4, our method reaches more than
a 42% success rate at the OSPA of 90% for both BIM and
PGD attacks. The success rate improves along with the
descend of OSPA. However, the accuracy of adversarial
examples first increases and then decreases. Decorated noise
added to contaminated images can mitigate the adverse
effects of adversarial perturbations. Hence, the adversaries’
accuracy increases first. However, DNN can only filter out
random noise within a certain limit. When the noise power
is too large, the original semantic information will be
wrecked. This leads to a drop in the adversaries’ accuracy.

5. Conclusion

In this paper, we propose a gradient-independent adversarial
example detection framework based on the technique of
deep learning interpretability. Based on the discussion, we
conclude that adversarial examples are sensitive to random
noise while clean ones are not. We cover the perturbations
with decorated random noise by taking advantage of this
property. The random noise is decorated based on the
example-wise Score-CAM to emphasize the area where the
target model really focused and to eliminate unnecessary
accuracy loss. Extensive experimental results show that the
proposed framework can always achieve the highest predic-
tion accuracy and detection success rate compared with pre-
vious works. We further make ablation experiments to
explore the impact of Score-CAM from different layers and
find that the middle layer of models is most suitable to
extract Score-CAM. In addition, we also investigate the
trade-off between clean data accuracy and detection success
rate. We believe that our framework can be easily updated
when more accurate and efficient saliency map methods
emerge.
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