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Synthetic aperture radar (SAR) as an imaging radar is capable of high-resolution remote sensing, independent of flight altitude,
and independent of weather. Traditional SAR ship image classification tends to extract features manually. It relies too much on
expert experience and is sensitive to the scale of SAR images. Recently, with the development of deep learning, deep neural
networks such as convolutional neural networks are widely used to complete feature extraction and classification tasks, which
improves algorithm accuracy and normalization capabilities to a large extent. However, deep learning requires a large number
of labeled samples, and the vast bulk of SAR images are unlabeled. Therefore, the classification accuracy of deep neural
networks is limited. To tackle the problem, we propose a semisupervised learning-based SAR image classification method
considering that only few labeled images are available. The proposed method can train the classification model using both
labeled and unlabeled samples. Moreover, we improve the unsupervised data augmentation (UDA) strategy by designing a
symmetric function for unsupervised loss calculation. Experiments are carried out on the OpenSARShip dataset, and results
show that the proposed method reaches a much higher accuracy than the original UDA.

1. Introduction

The Internet of Things (IoT) supports a smarter society by
enabling substantial numbers of sensors to perceive the
physical world [1, 2]. Being a form of radar, synthetic
aperture radar (SAR) is capable of high-resolution remote
sensing. Moreover, due to its all-time, all-weather, and
large-scale observation capabilities, the SAR system can pro-
vide detailed information about the monitored region and,
thus, plays an important role in many applications of both
military and civilian fields [3–17]. For example, the SAR
can gather systematically high-quality data of a city and help
build a smart city [18]. SAR images provide prodigious
amounts of information, so efficient classification methods
are needed to sort SAR images into different categories.

Traditional methods proposed in [19–22] have a similar
structure which requires a lot of manual experience. The
feature extraction and classification processes are not flexible
and need a high manual cost. With the development of com-
putational hardware and neural networks, deep learning

(DL) shows great potential in solving image classification
problems. In recent years, convolutional neural networks
(CNNs) have been commonly used to automatically extract
information from SAR images. In [23], the author proposed
a CNN architecture that consists of three convolutional
layers and one fully connected layer. Li et al. [24] used a
CNN structure to extract features from SAR images and
then further cluster these sample features in the feature
space using the metric learning model. Zhang et al. [25] pro-
posed an improved CNN model to solve the limited sample
issue via feature augmentation and ensemble learning strat-
egies. Chen et al. [26] presented a new all-convolutional
network (A-ConvNet), which only consists of sparsely con-
nected layers without fully connected layers being used.

The performance of deep neural networks is highly
related to the quality of samples and their labels. However,
the majority of SAR images are unlabeled since annotation
of SAR data is time-consuming [27]. Besides, unlabeled
SAR images still have considerable information available
for the training process. Therefore, how to utilize unlabeled
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samples effectively is an urgent problem to be solved in SAR
image classification. In this paper, for the situation that only
a few labeled data are available, we propose a semisupervised
learning-based method (named UDA-ALE) for SAR image
classification. The method utilizes both labeled data and
unlabeled data for model training, which can avoid the
model overfitting problem due to the lack of labeled samples.
And UDA-ALE makes the most of information in unlabeled
data, which helps the network model learn faster. In
addition, we designed a symmetric function for unsuper-
vised loss calculation, which improves the robustness of
the method.

The main contributions of this work are summarized as
follows:

(1) We proposed a novel SAR image classification
method based on semisupervised learning

(2) We developed a symmetric function for unsuper-
vised loss calculation

(3) We validated the efficiency of the proposed method
on the OpenSARShip dataset

The rest of this paper is organized as follows. In Section
2, we introduce the image classification problem, data
augmentation, and asymmetric consistency learning. The
proposed method is elaborated in Section 3. In Section 4,
we describe the experiment settings and analyze the results.
Last, we conclude the paper in Section 5.

2. Preliminaries

This section begins with formulating image classification
problems and then provides a brief introduction to data aug-
mentation technology and asymmetric consistency learning.

2.1. Image Classification Formulation. Image classification is
one of the major topics in the field of artificial intelligence
and the IoT. The goal of image classification is to distinguish
different types of images according to their characteristics in
the image information. Recent works [28–31] have focused
on using convolutional neural networks (CNN) to classify
images. Many types of CNN models, such as LeNet, VGG,
and GoogleNet, are proposed to improve the accuracy of
image classification. In general, as illustrated in Figure 1,
the CNNs used in image classification usually work in three
steps. First, the input image is normalized and resized. Sec-
ond, single or multiple blocks of convolution layers are used
to extract visual features of the image. Third, fully connected

layers (FC) map these features to the probability distribution
of different categories.

2.2. Data Augmentation. In image classification problems,
the training of neural networks entirely depends on data
and labels. However, the vast bulk of SAR images are unla-
beled, and the labeling process requires a large number of
human resources. Therefore, data augmentation [32] is pro-
posed to enlarge the size of datasets, which can be divided
into supervised data augmentation and unsupervised data
augmentation.

2.2.1. Supervised Data Augmentation. Supervised data aug-
mentation is aimed at obtaining new training samples by
performing a series of transformation operations on the
original data without changing their labels. Data augmenta-
tion, one of transformation operations, can be denoted as
qðx̂jxÞ. It obtains the augmented sample x̂ based on the
original sample x and the data distribution x̂ ~ qðx̂jxÞ.
Although a large body of supervised data augmentation
methods [33–36] improve the performance to some extent,
it can be seen that the improvement is limited because
augmentation operations are only applied on labeled data-
sets that are relatively small scale. Therefore, unsupervised
data augmentation (UDA) [37] is proposed to enlarge
unlabeled datasets. UDA utilizes relatively large-scale unla-
beled datasets, which can strive for further improvement
of the training performance.

2.2.2. Unsupervised Data Augmentation. UDA is a semisu-
pervised technique in which models are trained on both
labeled and unlabeled data. Therefore, it can be adopted to
obtain more unlabeled training data in the semisupervised
learning framework, and using unlabeled data can make
the output smoother. Figure 2 shows the UDA algorithm.
First, the backbone network M receives the sample x1 and
outputs the probability distribution pθðyjx1Þ. θ is the param-
eter set of M. Then, the label f ∗ðx1Þ and the probability dis-
tribution pθðyjx1Þ are used to calculate the supervised loss
value. On the other side, the unlabeled sample x2 is input
into the M̂, and the probability distribution pbθ ðyjx2Þ is

obtained. bθ is the parameter set of the network M̂. It is
obtained by copying from θ in real time and does not update
through the back-propagation process. Next, x2 is added
with a little disturbance ε to get x̂ = qðx, εÞ, which is called
the augmentation strategy. After getting the probability
distribution pθðyjx̂Þ, the UDA calculates the unsupervised
loss value. Last, the final loss can be obtained by adding
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Figure 1: Image classification.
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the supervised loss value and the unsupervised loss value,
denoted as

min
θ

J θð Þ = Ex1~pL xð Þ −log pθ f ∗ x1ð Þ x1jð Þ½ �

+ λEx2~pU xð ÞEx̂~q x̂ x2jð Þ D peθ y x2jð Þ pθ y x̂jð Þk
� �h i

,

ð1Þ

where pLðxÞ and pUðxÞ represent the data distributions of
the labeled samples and the unlabeled samples, respectively.
qðx̂jx2Þ is the data augmentation operation, and λ is the
weight coefficient. Dð·Þ represents the difference between
two probability distributions. The parameters of M can be
updated by minimizing the final loss. The UDA algorithm
makes the backbone network insensitive to disturbance
and noise added into input and hidden layers; thus, the out-
put of the backbone network can be smoother. Furthermore,
the information of labeled samples can be gradually passed
to unlabeled samples by means of final loss minimization.
Taken together, UDA improves the performance of the
image classification by increasing the diversity of unlabeled
data.

2.3. Asymmetric Consistency Learning. According to
Figure 2 and Equation (1), the final loss value is calculated
by adding the supervised loss and unsupervised loss. Both
of them are asymmetric consistent in the UDA algorithm,
and the following part describes in greater detail the two
loss functions.

2.3.1. Supervised Loss. The supervised loss function can be
split from the final loss, shown as

Ex1~pL xð Þ −log pθ f ∗ x1ð Þ x1jð Þ½ �: ð2Þ

In order to make a concrete analysis of the function, we
take an iteration as an example. In the iteration, a minibatch
of labeled samples is randomly selected, which is denoted as
fðxi, yiÞgnSi=1. nS represents the number of labeled samples in
the minibatch. Moreover, the cross-entropy function is used
to calculate the loss function, which is asymmetric consis-

tent. Therefore, the difference between the probability distri-
bution and the label can be obtained:

Ex1~pL xð Þ −log pθ f ∗ x1ð Þ x1jð Þ½ �

= −
1
nS

〠
nS

i=1
〠
nc

c=1
1 yi == cð Þ log pθ yi == c xijð Þ,

ð3Þ

where nc represents the number of categories and c is the
category of the current sample. yi represents the actual label
of the current sample. 1ðyi == cÞ is a flag function. It equals 1
when yi is c and vice versa.

2.3.2. Unsupervised Loss. Similarly, the unsupervised loss
function can be obtained by splitting the final loss, shown as

Ex2~pU xð ÞEx̂~q x̂ x2jð Þ D peθ y x2jð Þ pθ y x̂jð Þk
� �h i

: ð4Þ

Unlike the supervised loss, the unsupervised loss only
includes two probability distributions instead of actual
labels. Thus, Kullback-Leibler divergence (KL-divergence)
[38], which can measure the distance between two different
distributions, is adopted to measure the difference Dð·Þ,
and it is asymmetric consistent as well. Given two distribu-
tions P,Q defined on the probability space X , the KL-
divergence is

D P Qkð Þ = 〠
x∈X

P xð Þ log P xð Þ
Q xð Þ
� �

: ð5Þ

The loss value calculated by KL-divergence gets larger as
the difference between the two probability distributions gets
greater, and it ranges from 0 to ∞. KL-divergence equals 0
only if the two probability distributions are identical. There-
fore, the unsupervised loss can be rewritten as

Ex2~pU xð ÞEx̂~q x̂ x2jð Þ D peθ y x2jð Þ pθ y x̂jð Þk
� �h i

= 1
nU

〠
nU

i=1
〠
nc

c=1
peθ yi = c xijð Þ log

peθ yi = c xijð Þ
pθ yi = c x̂ijð Þ ,

ð6Þ
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Figure 2: The UDA algorithm.
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where nU is the number of unlabeled samples in the mini-
batch. peθðyi = cjxiÞ is set to the probability distribution of

the actual event, and pθðyi = cjx̂iÞ is regarded as the probabil-
ity distribution of the theoretically fitted event.

3. Proposed Method

In this section, we give a detailed account of the proposed
method, including the network structure, data augmentation

strategy, symmetric consistency learning, and some addi-
tional training techniques.

3.1. Network Structure. The structure of the backbone net-
work is shown in Figure 3. It works in two steps, (1) feature
extraction and (2) classification. First, four convolution
modules are designed to extract visual features of images,
containing network layers, batch normalization layers, recti-
fied linear units (ReLUs), and max-pooling layers. Second,

Input image 5 × 5 (16) 2 × 2

ReLU

5 × 5 (32) 2 × 2

ReLU

5 × 5 (64) 2 × 2

ReLU

5 × 5 (128) 2 × 2

ReLU

Feature extraction

... ReLU
FC

2048

... ReLU
FC

1024

... ReLU
FC

128

...
Softmax

3

Output
class

Classifier

Convolution layers Batch normalization

Max-pooling layers Fully connected layers

Flatten

Figure 3: The structure of the backbone network for image classification.
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Figure 4: Data augmentation operations.
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the output of the convolution modules is flattened and put
into a nonlinear classifier, consisting of fully connected
layers, ReLUs, and a softmax function. The classifier can be
used to map visual features to the probability distribution
of different categories, denoted as pθðyjxÞ. According to the
probability distribution, the category of the image can be
obtained. The parameters of the backbone network can be
adjusted through the semisupervised learning algorithm to
classify images more accurately.

3.2. Data Augmentation Strategy. In image classification
tasks, augmentation strategies always include flipping, trans-
lation, and clipping, as illustrated in Figure 4. The augmen-
tation strategy used in this paper is RandAugment [39],
which is an improved version of AutoAugment [34]. Auto-
Augment is aimed at automatically finding a series of
suitable image augmentation strategies from the Python
Image Library (PIL) and form a final augmentation method
by combining these strategies together. However, RandAug-
ment samples strategies randomly instead of searching for
them, largely improving efficiency. The set of sampling set
is also from PIL. In general, it is easier to carry out Ran-
dAugment compared to AutoAugment; besides, it does not
require additional labeled samples for finding suitable
augmentation strategies. Algorithm 1 gives the details of
RandAugment.

The effect of RandAugment relies on the number of
operations n and the distortion magnitude m. Supposing
that n = 2, the effect of different distortion magnitudes is

shown in Figure 5. As we can see, the image has more
changes as m gets larger.

3.3. Symmetric Consistency Learning. In the original UDA
algorithm, the unsupervised loss is calculated by KL-diver-
gence, which is an asymmetric function. The measurement
result will change if the sequence of data input reverses, caus-
ing the deviation of the training network weight. However,
the difference between probability distributions needs to be
independent of the input order. Therefore, we proposed a
new measurement method called absolute log-likelihood
estimation (ALE). It is symmetric and will not change when
the input order changes. ALE prevents the information
learned from samples from deviating. The details of ALE
are described in Algorithm 2. It computes the absolute value
of the difference between two probability distributions first.
Then, it takes negative logarithmic on the result, and finally,
probability distribution difference can be obtained. The
unsupervised loss obtained by ALE is shown as

Ex2~pU xð ÞEx̂~q x̂ x2jð Þ ALE peθ y x2jð Þ pθ y x̂jð Þk
� �h i

= 1
m2

〠
m2

i=1
〠
N

c=1
− log 1 − peθ yi = c xijð Þ − pθ yi = c x̂ijð Þ

��� ���� �
:

ð7Þ

3.4. Additional Training Techniques. In order to achieve
a better training performance, some additional training

Input: collection of data augmentation operations: (identity, autocontrast, equalize, rotate, solarize, color, posterize, contrast,
brightness, sharpness, shear-x, shear-y, translate-x, translate-y), the maximum steps of data augmentation: n, the distortion
magnitude of data augmentation: m.
Output: the sequence of augmentation.
1: for 1, 2,⋯, n do
2: Randomly select one operation from the operation collection.
3: Assign distortion magnitude m to the data augmentation operation.
4: return A sequence of augmentation operations with length N .

Algorithm 1: RandAugment.

Magnitude: 5

Magnitude: 10
Original image ShearX Contrast

Original image ShearX Contrast

Figure 5: The effect of different distortion magnitudes in RandAugment.
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techniques are adopted in the training process and the
loss function calculation.

3.4.1. Confidence Mask. In the training process, the proba-
bility distributions of unlabeled data x and unlabeled aug-
mented data x̂ are used to calculate the unsupervised loss.

However, not all unlabeled samples in the minibatch are
suitable for loss calculation. If the probability distribution
predicted by the backbone network is even, the network
model will be uncertain about the classification result. In
that case, the unlabeled sample hardly contributes to the
network training and could cause an adverse effect on
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Figure 6: Three forms to increase the threshold ηt .

Input: Probability distribution: p, another probability distribution: q.
Output: Probability distribution difference value res.

1: Calculate the absolute difference between two probability distributions to get the intermediate variable
zi ⟵ 1 − absðpðxiÞ − qðxiÞÞ.

2: Take the negative logarithm and sum them up to get the result res⟵ −∑i log ðziÞ.
3: return res.

Algorithm 2: Absolute log-likelihood estimation.
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training. Therefore, we set a confidence threshold β to
keep such unlabeled samples from the loss calculation.
The unlabeled samples will be selected to calculate the loss
value only when the maximum value of its probability dis-
tribution is greater than β. For instance, in a three-
classification problem, the predicted probability distribu-
tion is ½0:6, 0:3, 0:1�. If the threshold β is more than 0.6,
the unlabeled sample will be discarded. The confidence
threshold β can be set to different values according to
classification tasks and datasets.

3.4.2. Predicted Value Sharpening. In order to make differ-
ences between probabilities more discernible, a softmax
thermal parameter τ is added to the probability distribution
of the unlabeled data [40, 41], denoted as

psharpθ y xjð Þ = exp zy/τ
À Á

∑y ′ exp zy ′ /τ
� � , ð8Þ

where zy represents the output of the last fully connected
layer in the classifier and will be input to the softmax func-
tion. zy corresponds to the category label y. Adding the soft-
max thermal parameter sharpens the predicted probability
values and accelerates the training process.

Taken together, the unsupervised loss function in
Equation (7) can be redefined by combining the confi-
dence mask and the predicted value sharpening technolo-
gies, shown as

Ex2~pU xð ÞEx̂~q x̂ x2jð Þ ALE peθ y x2jð Þ pθ y x̂jð Þk
� �h i

= 1
m2

〠
m2

i=1
1 max

y ′
peθ y′ xij
� �

> β

 !
〠
N

c=1

− log 1 − psharpeθ yi = c xijð Þ − pθ yi = c x̂ijð Þ
��� ���� �

,

ð9Þ

where 1ðmaxy ′peθðy′jxiÞ > βÞ = 1 ifmaxy ′peθðy′jxiÞ > β is true;

otherwise, 1ðmaxy ′peθðy′jxiÞ > βÞ = 0.

3.4.3. Training Signal Annealing. In the semisupervised
learning framework, labeled data is far more than unlabeled
data. It leads to the situation that the network has overfitted
labeled samples while it is still underfitting unlabeled
samples. To tackle the problem, training signal annealing
(TSA) is used to gradually release the knowledge of labeled
samples into the training process. For example, in the tth
iteration of training, the backbone network receives the
labeled sample x and outputs the probability distribution
pθðy∗jxÞ. If the maximum probability value is greater than
the threshold ηt , the labeled sample will not be used when
calculating the supervised loss. Moreover, the value of ηt
increases as training continues, ranging from 1/nc to 1. nc
is the number of categories. As a result, TSA effectively pre-
vents the network from overfitting labeled samples during
the training process.

Figure 6 illustrates three strategies to increase ηt , includ-
ing (a) logarithmic, (b) linear, and (c) exponential forms.
And their functions are denoted as

ηt = 1 − exp −
t
T

∗ 5
� �� �

∗ 1 − 1
N

� �
+ 1
N

að Þ,

ηt =
t
T

∗ 1 − 1
N

� �
+ 1
N

bð Þ,

ηt = exp t
T

− 1
� �

∗ 5
� �

∗ 1 − 1
N

� �
+ 1
N

cð Þ,

ð10Þ

where T is the maximum number of training iterations.
Table 1 lists the major symbols used in this paper.

4. Experiments

In this section, experiments are carried out to evaluate the
performance of the proposed method. First, we introduce
the experiment settings and preprocess the dataset. Then,
we test the proposed method using the OpenSARShip data-
set [42] and analyze the testing results.

4.1. Experiment Settings and Dataset Preprocessing. We used
the OpenSARShip dataset for training and testing in this
paper, which contains labeled and unlabeled SAR images
of different ships. OpenSARShip is organized into different
folders corresponding to different scenes. In each folder,
there are four formats of ship images, including “Patch,”
“Patch_Uint8,” “Patch_RGB,” and “Patch_Cal,” as shown
in Figure 7. In this paper, we chose the visualized 8-bit gray
images (“Patch_Uint8”) as the original images for training
the network. Moreover, we selected images of bulk carriers,

Table 1: Symbol table.

Symbol Description

q x̂ xjð Þ Data augmentation operation.

θ Parameter set of backbone network M.

pθ y x1jð Þ Probability distribution of labeled samples.

pbθ y x2jð Þ Probability distribution of unlabeled samples.

pL xð Þ, pU
xð Þ

Data distributions of labeled samples and
unlabeled samples.

nc Number of categories.

nS Number of labeled samples in the minibatch.

nU Number of unlabeled samples in the minibatch.

n The maximum steps of data augmentation
in RandAugment.

m Distortion magnitude of data augmentation
in RandAugment.

β Threshold of the confidence mask.

τ Softmax thermal parameter in the predicted
value sharpening.

ηt Threshold of the training signal annealing.
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containers, and tankers to formulate a three-classification
problem, and each SAR image has two types of polarization
(VV and VH), as shown in Figure 8.

We preprocessed the dataset before training the classifi-
cation model. For labeled data, first of all, we collected 1740
chips of tankers, 1582 chips of containers, and 2298 chips of
bulk carriers from the OpenSARShip dataset. Second, we
chose images that are in the tanker set and larger
than 35 × 35 pixels to build a new subset of tankers.
Similarly, images that are in the container set and
larger than 70 × 70 pixels are collected as a subset of
containers, and images that are in the bulk carrier set
and larger than 75 × 75 pixels are retained as a subset of
bulk carriers. Thus, we kept 1450 chips of tankers, 1410
chips of containers, and 1442 chips of bulk carriers, which
will be used for training and testing. Third, we resized
these images to 100 × 100 pixels and divided images in
each class into three parts, consisting of K samples for
training, 200 samples for validation, and the rest for
testing. For unlabeled data, we collected them from the
remaining images in the OpenSARShip dataset and dis-
carded their labels. There are 3000 unlabeled images in

total, and all of them are also resized to 100 × 100 pixels.
In addition, all images in the unlabeled dataset are differ-
ent from images in the labeled dataset.

CNN, UDA-KL, and UDA-ALE are implemented in this
section. CNN is the backbone network. UDA-KL is based on
the UDA algorithm and uses KL-divergence to calculate
unsupervised loss, whereas UDA-ALE uses the proposed
ALE function to obtain unsupervised loss. The validation is
carried out every 500 iterations. If the accuracy of the valida-
tion set no longer increases and even begins to decline, the
training process terminates. During the validation and test-
ing processes, the classification model receives samples and
outputs the prediction result, denoted as

ŷi = arg max
c

pθ yi = c xijð Þ: ð11Þ

The experiment parameters are listed in Table 2.

4.2. Results and Discussion. During the training process, we
set up different situations based on the number of samples
in each class, denoted as K . Images are sampled at random,

Patch

S1A_IW_GRDH_1SDV_20150823T221233_2
0150823T221258_007396_00A2CA_54D0

Patch_Uint8 Patch_RGB Patch_Cal Ship.xml Metadata.xml Readme.pdf

VV channel
single amplitude

VH channel
single amplitude

VV channel
single amplitude

VH channel
single amplitude

Figure 7: OpenSARShip dataset file structure.

Bulk carrier

Container

Tanker

(a) VV polarization

Bulk carrier

Container

Tanker

(b) VH polarization

Figure 8: Examples of SAR images based on VV and VH polarizations.
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and 50 independent experiments are carried out in each sit-
uation. The results are shown in Table 3 and Figure 9.

We can see that the proposed algorithm (UDA-ALE) has
higher classification accuracy than UDA-KL and CNN in all
situations. Compared to CNN, UDA-KL utilizes both
labeled and unlabeled samples and learns more potential
information during the training process; therefore, it reaches
a higher accuracy rate. Furthermore, UDA-ALE uses the
ALE function, which is symmetric, to calculate unsupervised

loss instead of using KL-divergence, which is asymmetric.
Therefore, compared to UDA-KL, UDA-ALE has better
robustness to the input order of probability distributions
and classifies SAR images more accurately. In general, sym-
metric consistency learning is more suitable for solving SAR
image classification problems.

5. Conclusion

This paper proposed a semisupervised learning-based
method to solve SAR image classification with few labeled
data. The method uses labeled and unlabeled data for model
training, which makes most the of information in unlabeled
samples and avoids the overfitting problem due to the lack of
labeled samples. In addition, a novel symmetric function is
designed to calculate unsupervised loss, which changes the
measurement mode of the difference between probability
distributions in the original UDA framework. The experi-
ment results show that the original UDA performs better
than the backbone network because it makes the best use
of information in unlabeled images. Besides, the proposed
method reaches a much higher classification accuracy than
the original UDA because symmetric consistency learning
makes the training process more robust and steady. In the
future, we will concentrate on minimizing the size of the
proposed model to make it suitable for resource-constraint
IoT devices.
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