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The sixth-generation (6G) mobile communications are considered as a future network and very closed to the Industrial Internet of
Things (IIoT) due to its low latency and high throughput. Massive nodes supported by 6G make up the complexity of the network.
Moreover, the heterogeneous traffic brings difficulties to the network management. Long-term network traffic matrix (TM) predic-
tion is a crucial technology for realizing network edge intelligence and dealing with the above issues. However, predicting long-term
network traffic in heterogeneous IIoT is challenging. Due to the powerful feature extraction capability over long sequences, self-
attention is widely applied in language inference tasks. Motivated by these observations, we propose a self-attention traffic matrix
prediction (SATMP) model for long-term network TM prediction in IIoT scenarios. SATMP consists of three components: (a) a
spatial–temporal encoding for obtaining the spatial–temporal features of network TM; (b) a learnable positional encoding for
providing positional correlation to the traffic sequence; and (c) a self-attention module for capturing long-term dependence. These
components work together to enhance long-term prediction performance in complex networks effectively. Extensive experiments on
three publicly available datasets demonstrate that SATMP is feasible and accurate in IIoT long-term network TM prediction.

1. Introduction

The sixth-generation (6G) has superior features to previous
generations of mobile communications, such as low latency
communications, high throughput, and massive connection
[1]. These advantages will bring new developments to Indus-
trial Internet of Things (IIoT), especially the wide application
of edge intelligence [2, 3]. Edge intelligence is a combination
of edge computing and artificial intelligence, which deploys
machine learning algorithms to edge devices and gets closer
to data sources. Edge intelligence relies on edge devices to
cooperate with other devices to complete tasks [4], shorten-
ing the data transmission delay. However, IIoT is character-
ized by large-scale heterogeneity and requires high fault
tolerance. The application of edge intelligence will make
computing, storage, and communication in IIoT more com-
plex. These changes not only put forward the higher require-
ments for network quality of service (QoS), but also bring
more challenges to network management:

(i) Data transfer security and stability: IIoT calculates,
generates, stores large amount of production and
user data. A secure and reliable network is needed
to protect industrial data and user privacy [5, 6]. In
addition, IIoT networks are densely connected and
have expensive network equipment, which requires
protection against industrial accidents caused by
network latency and network attacks.

(ii) Efficient resource allocation: IIoT has a large num-
ber of sensor devices and the amount of data that the
nodes need to collect and transmit increases signifi-
cantly. The computing, storage, and communication
capabilities of individual nodes are limited in IIoT.
In this situation, deploying a complex algorithm
framework may lead to higher network latency
and energy consumption [7].

(iii) High heterogeneity of the network: 6G enables IIoT to
have a large number of mobile devices and sensors
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such as smart vehicles and unmanned aerial vehicles
(UAVs) [8, 9], and so forth. Numerous mobile and
fixed nodes are connected by wired and wireless net-
works [10]. They have different communication tech-
nologies and protocols, which require well-designed
compatible protocols and network architectures [11].

Network traffic matrix (TM) prediction is one of the criti-
cal technologies of network edge intelligence and an effective
method to deal with the above challenges. It uses the historical
traffic of the network to predict the network traffic in the
future. Accurate network traffic prediction results can provide
reliable data support for intelligent network management. Its
ability in load balancing, congestion control, and security
warning can effectively improve the stability and operation
efficiency of IIoT [12]. For example, TM prediction can pro-
vide early warning of abnormal traffic changes and guard
against attacks such as flooding attacks. Besides, the predicted
results help to allocate resources appropriately. According to
the prediction result, some core nodes can release some com-
puting resources during low flow periods. Traffic prediction
can also help IIoT to automatically configure, supply, and test
network equipment and routing algorithms and helps build
better network structures. This paper focuses on the long-
term prediction of the network TM in IIoT and building
edge intelligence. The network TM contains the network traf-
fic of each pair of origin–destination nodes within a sampling
interval and represents the overall state of the IIoT network.
Furthermore, compared with the short-term forecast, the
long-term forecast reserves more time for network configura-
tion and testing [13]. On the one hand, networkmanagers can
use the long-term prediction results to judge the long-term
impact of the current operation on the future network. On the
other hand, the long-term prediction results leave more time
for network configuration and testing, which is more signifi-
cant than the short-term prediction.

Figure 1 shows the edge network traffic prediction in
IIoT. We list three scenarios for IIoT: smart cars, smart grids,
and smart factories. Wireless base stations are connected
through backbone links. Base stations on the edge provide
wireless access to various nodes, such as smart vehicles,
industrial sensors, industrial equipment, and electricity
pylons. At the same time, UAV-assisted communication is
available in some complex areas [14]. Wireless networks are
also used to communicate between nodes. The heteroge-
neous IIoT scenario makes it difficult to predict network
traffic. The proposed self-attention traffic matrix prediction
(SATMP) can be deployed on edge computing nodes, such as
wireless base stations, vehicles, UAVs, and so forth. Edge
intelligence can quickly process computing tasks on edge
without being limited to the network conditions of cloud
computing [15]. IIoT can be better managed by referring
to the predicted results. For example, primary routing nodes
can reasonably allocate bandwidth and channels to improve
resource utilization. Factories and grids can detect attacks
based on changes in the network traffic pattern.

In essence, the prediction of network TM is a time-
series prediction problem. However, the network TM series
in IIoT is significantly different from other time series.
First, network traffic in IIoT is stochastic and dynamic,
which leads to more complex statistical characteristics.
Existing studies have shown that network traffic has self-
similarity, long-time dependence, heavy tail distribution
[16], and other characteristics. Second, network traffic is
affected by other factors besides time. For example, back-
bone networks in IIoT are affected by network topology
and routing settings, while wireless communication is
influenced by movement patterns and specific functions
of mobile nodes. All the above factors bring difficulties
to IIoT traffic prediction. In addition, long-term prediction
is another challenge, which makes some models lose their
predictive ability.

Smart grid Smart factory

Smart vehicle

Traffic prediction node

Wireless base station
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Attack detection
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FIGURE 1: An illustration of edge network traffic prediciton in IIoT.
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The attention mechanism originated from human vision.
It assigns different weights to different input parts. The self-
attention mechanism is a variant of the attention mecha-
nism. The self-attention mechanism is first proposed by
Lin et al. [17] for extracting an interpretable sense embed-
ding. The self-attention mechanism reduces the dependence
on external information and better captures the internal cor-
relation of data. In recent years, the self-attention mecha-
nism has made remarkable achievements in the natural
language processing (NLP) field and achieved leading results
in tasks such as text translation and language information
[18, 19]. The self-attention module can calculate the data of
different time steps in parallel through reasonable position
encoding without attaching them to the recurrent neural
network. It shortens the distance between any two inputs
significantly to enhance the learning ability of long-term
dependence.

Motivated by the above analysis, we utilize the self-
attention mechanism for IIoT traffic prediction and propose
a network TM prediction model based on spatiotemporal
features. We first add spatial and temporal encoding to the
data to effectively utilize the spatiotemporal information of
network TM. Then, the self-attention mechanism is used to
learn the spatiotemporal characteristics. In the encoder, we
design a learnable positional encoding so that the model can
perceive the order of input data. Meanwhile, positional
encoding is used to ensure the parallelization of training.
The main contributions of this paper are as follows:

(i) We propose SATMP, a novel model based on the
self-attention mechanism for long-term network
TM prediction in IIoT. The self-attention mecha-
nism with spatiotemporal encoding is used to learn
the complex associations of network traffic.

(ii) We design a learnable positional encoding scheme to
provide position correlation for the long input
sequence, enhancingmodel awareness of input order.

(iii) We evaluate the performance of SATMP on three
publicly available datasets. The results show that
SATMP is feasible and outperforms other methods
in predicting accuracy.

The rest of this paper is organized as follows. Section 2
overviews the studies related to traffic prediction and
describes their characteristics. In Section 3, we first provide
a detailed definition of long-term IIoT traffic matrix predic-
tion and then elaborate on the related challenges. The frame-
work and details of the proposed algorithm are discussed in
Section 4. In Section 5, we introduce the datasets we use,
describe the experiment’s specific details, and analyze the
experimental results. Finally, we summarize the research of
this paper and discuss our future work.

2. Related Work

Network traffic prediction is one of the hot topics in network
characterization and measurements. It has attracted the wide

attention of researchers, and the related literature is abun-
dant in some specific contexts.

Many studies use statistical models to predict network
traffic. For example, Moayedi and Masnadi-Shirazi [20]
decompose network traffic into normal and abnormal parts
and use the autoregressive integrated moving average model
(ARIMA) to predict network traffic and detect anomalies.
Wang et al. [21] propose a traffic flowmodeling and prediction
method based on an autoregressive moving average model
(ARMA), which is easy to calculate. The autoregression-based
model uses the linear combination of historical sequence data
to generate predictions results. It cannot model the nonlinear
features in the flow and requires the sequence to have a certain
stability. Kim [22] uses integer-valued generalized autoregres-
sive conditional heteroscedasticity (INGARCH) to capture the
nonlinear characteristics of network traffic. Bayati et al. [23]
use Gaussian process regression (GPR) to predict the flow and
use self-similar covariance functions to improve the prediction
accuracy. However, the above models usually do not take into
account the spatial connection or interdependence of network
nodes. The 6G-enabled IIoT tends to contain much more
nodes and links, limiting the use of these statistics-basedmeth-
ods in more general problems.

At present, the mainstream methods pertain to machine
learning and deep learning. Nikravesh et al. [24] compare the
performance of support vector machines (SVM), multilayer
perceptron with weight decay (MLPWD), and multilayer
perceptron (MLP) in traffic prediction tasks. Jain and Prasad
[25] use the XGBoost algorithm to predict the traffic of tele-
com network in peak hours. The machine learning algorithm
can mine some complex network traffic patterns, but com-
pared with deep learning, its feature extraction ability is rela-
tively insufficient. Many researchers have used deep learning
algorithms with stronger feature extraction ability, such as
convolutional neural network (CNN) [26], deep belief network
(DBN) [27], recurrent neural network (RNN) [28], long short-
term memory networks (LSTM) [29], meta-learning method
[30]. Some scholars specifically study traffic prediction meth-
ods in IIoT. For instance, Nie et al. [31, 32] design two predic-
tion methods based on multitask learning and reinforcement
learning, respectively, in complex and heterogeneous IIoT.
Compared with linear and machine learning methods, the
deep learning model is more complex and can better model
the time dependence of traffic flow series. RNN is more suit-
able for processing time series with shared parameters in the
time dimension. However, the recurrent structure of RNN is
easy to cause gradient disappearance and gradient explosion
when using too many units. LSTM adopts cell states and three
gates: an input gate, an output gate, and a forget gate to allevi-
ate the above problems. It could effectively learn the long-term
correlation characteristics of the traffic. Gated Recurrent Unit
(GRU) is a variant of LSTM that reduces the gates to two.
LSTM and GRU have obtained better prediction results and
have become a widely used traffic prediction model in recent
years [33, 34].

Some researchers combine different models to improve
performance. Compared with using these models alone,
the hybrid model has improved the prediction effect. For
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example, Li et al. [35] propose a method combining wavelet
transform and artificial neural network (ANN), which uses
wavelet transform to decompose time-domain traffic and
adds nonlinear prediction ability to the model with the help
of ANN to reduce the prediction error. Similarly, Tian et al.
[36] use the Mallat wavelet transform algorithm to decom-
pose the network traffic, then use ARIMA and least-squares
support vector machine (LSSVM) to predict different com-
ponents, respectively. Zhang et al. [37] combine wavelet
transform with LSTM and reduce the prediction error.
Zhao et al. [38] and Tian et al. [39] decompose complex
network data into low-frequency smooth sequence through
empirical mode decomposition. Then they use LSTM and
ARMA, respectively to predict, effectively improving the pre-
diction performance.

The literature analysis shows that more and more
researchers have preferred neural networks and their hybrid
models in recent years. RNN, LSTM, and their variant net-
works can better model the network traffic sequence because
of their solid time-dependent learning ability. Compared
with linear and machine learning models, those models
have a significant advantage in prediction accuracy.

In addition, the new research trend is the application of
attentionmechanisms in the network structure to enhance the
model’s attention to spatiotemporal correlation. For example,
Feng et al. [40] propose a network traffic prediction model
with attention mechanisms to capture long and complex
dependencies. Zhao et al. [41] propose a spatial–temporal
attention-CNN to effectively obtain the dynamic spatiotem-
poral correlations of cellular networks. In order to fully
learn the characteristics of the IIoT long-term network TM
sequence, we apply the self-attention mechanism to network
TM prediction. We aim to improve the long-term prediction
performance by using the powerful long-term feature extrac-
tion capability of the self-attention mechanism.

3. Problem Formulation

This section elaborates on the IIoT long-term TM problem
and related challenges. We first define the long-term predic-
tion problem of network TM in IIoT. Then, we analyze
the challenges of the research problem from three aspects:
multivariate, spatial–temporal correlation, and long-term
dependence.

3.1. Long-Term IIoT TM Prediction. In order to facilitate the
subsequent consideration of topological and spatial factors,
we use a weighted directed graph to model the IIoT network.
Considering an IIoT with N nodes, which are connected by
H links, we establish a directed graph G ¼ V ;ð IÞ, where V is
the set of nodes, and I is the set of links. For the backbone
network, if there is a link between node i and node j, then I
has two edges vi;ð vjÞ with different directions. The weight of
each link represents the route weight of the link. For wireless
networks, we think there is a direct connection between any
two research nodes regardless of their link weight. The traffic
in the IIoT network TM includes the traffic flow that each
origin node sends to other destination nodes within a certain
interval. The definitions covered in this paper are as follows:

Definition 1. The IIoT network traffic matrix Mt 2 RN ∗N is:

Mt ¼
mt

1;1 ⋯ mt
1;N

⋮ ⋱ ⋮
mt

N;1 ⋯ mt
N;N

2
64

3
75; ð1Þ

where N is the number of nodes in the IIoT network, mt
i; j

represents the traffic flow sent from node i to node j in the t
sampling interval.

Definition 2. The network traffic vector Xt 2 RN2
is a trans-

formation of Mt . Xt is made up of mt
k, where k is calculated

by k ¼ i − 1ð Þ × N þ j. Xt is:

Xt ¼ mt
1;m

t
2;…;mt

N2

È É
: ð2Þ

Assuming that the number of the obtained traffic is T , all
the obtained traffic can be donated as TM ¼ X1;f X2;…;
XTg 2 RN2×T . Then, the prediction task in this paper is using
the historical flow S ¼ Xt−ωþ1;f Xt−ωþ2;…; Xtg to predict
the flow Y ¼ Xtþ1;f Xtþ2;…; Xtþlg, where ω is the historical
length and l is the traffic length to be predicted. The formula
is as follows:

Y ¼ f Xt−ωþ1;Xt−ωþ2;…;Xt ;R;Pð Þ; ð3Þ

where R is the spatial correlation of the network and P is
the timestamp. We predict longer lengths than previous work
[33, 42] in our work. The goal is to build a model that achieves
low error between predicted value bY and ground truth Y .

3.2. Challenges. In addition to the challenges in short-term
time-series prediction, such as multiple factors influence,
prediction lag, high randomness, and so forth; the long-
term prediction of IIoT TM faces more challenges due to
the complexity of network traffic itself and the influence of
potential factors:

(i) Multiple dimensions: the network TM represents all
the origin–destination traffic in the IIoT network.
Assuming an IIoT has N nodes, there are N2 traffic
flows in the network TM. Compared with single-
dimensional time series, multiple dimensional traffic
prediction requires higher prediction performance
and hardware consumption. Models must have solid
predictive power to simultaneously capture deeper
features and predict all dimensions. In addition,
nodes in IIoT have limited power and computing
capacity [43], so the computational time and space
complexity of the prediction model should not be
high.

(ii) Complex temporal and spatial associations: some
IIoT, such as smart vehicles and smart logistics,
are designed to provide services for human beings.
Their traffic is closely related to human activities,
so there is a temporal correlation between future
traffic and historical traffic. However, the temporal
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correlation pattern has different dimensions, such as
quarter, month, and week. In other cases, IIoT traffic
has a high suddenness in fine granularity, which
brings difficulties to learning association mode. In
addition, the change in network traffic is affected by
spatial association, such as other network nodes, net-
work topology, routing algorithm, link bandwidth,
and so forth. For example, many backbone networks
use the Open Shortest Path First (OSPF) gateway
protocol, which generally uses the shortest path algo-
rithm, for example, Dijkstra, to construct a routing
table. Network packets choose the route to the desti-
nation node according to the routing table, which
affects the traffic changes of different nodes and links.

(iii) Long-term dependencies: it is difficult to capture the
long-term dependencies. The prediction target of
many previous studies is the network traffic situation
at the next interval [32, 44], while the purpose of our
study is to predict the change of network traffic in a
long period (such as the next 48 hr). Long-term pre-
diction requires a more vital ability to model long-
term dependencies. Many existing models have
limited ability to capture long-term dependencies.
For instance, RNN and LSTM have the advantage of
processing time-series data. However, their perfor-
mance will decrease in long-term prediction tasks.
For example, Zhou et al. [45] prove that as the predic-
tion length increases, the inference time of LSTM
becomes longer, and the prediction error increases.

In view of the above challenges, we designed a more effi-
cient prediction scheme of self-attention mechanism for IIoT.
We use the parallelism capability of the self-attention mecha-
nism to improve the processing capability of multidimen-
sional data. In addition, we design spatiotemporal encoding
to provide characteristics of IIoT network TM sequences. Last
but not least, we design learnable position encoding to pro-
vide time correlations for long input sequences. The frame-
work and details of the model are explained in Section 4.

4. System Model

In this section, we first introduce the main framework of the
proposed model. Then we discuss the various modules in our
proposed work, including spatiotemporal encoding, learn-
able positional encoding, self-attention module, feedforward
layer, and output layer. The main notations covered in this
article and their descriptions are summarized in Table 1.

4.1. Main Framework. Figure 2 shows the main framework of
the prediction model with the spatiotemporal self-attention
mechanism proposed in this paper. The model’s input con-
sists of three parts: network TM, traffic flow timestamp, and
network topology and route weight. We first add spatial
and temporal encodings to the preprocessed flow matrix
sequence. Then the sequence is input into the stacked enco-
ders to learn the temporal and spatial characteristics and
dependent correlations. Every encoder consists of learnable
positional encoding, a multihead self-attention module, and

a feedforward neural network. The positional encoding pro-
vides position relations for input sequences. The temporal
and spatial dependence of different sequences is learned by
the self-attention modules. The feedforward neural networks
provide nonlinear transformations for each encoder. Resid-
ual connection is used between the three parts to prevent
network degradation and enhance network stability. Finally,
the fully connected layer is used to output the prediction
results.

4.2. Spatiotemporal Encoding. In urban traffic flow predic-
tion, the spatial dependencies between road segments are of
great importance, which has a significant influence on the
change of traffic flow [46]. Unlike the transportation system,
the relative position of nodes in the network is not essential,
while the interactive relationship between nodes or regions
has a more significant impact on network traffic. In the
backbone network scenario, we utilize the network topology
and routing protocol to build spatial encoding. The network
topology and route weight are used to calculate the shortest
path matrix of the network. The transformed routing matrix
is added into the model as spatial routing encoding to
enhance the model’s perception of spatial dependence. For
graph G, we first use the shortest path algorithm correspond-
ing to the network, such as Dijkstra, to calculate the routing
distance of each pair of origin–destination nodes according
to the weight of I. The routing matrix is donated by R. Then
we flatten R in the way just like we map the TM. Since the
path selection strategy takes a shorter path, we invert every
element in R. Then we normalized R to prevent interference
with the original data. In the wireless network scenario,
we build the spatial encoding of network TM by utilizing
the functional area type of telecommunication region. First,
we use Google Map to find the points of interest (PoIs) of
each study region. Next, we determine the functional area
types of all study regions by considering the PoIs and
CORINE Land Cover (CLC) map [47]. CLC provides
information on land cover and land cover change across
Europe. Based on satellite images, the land is divided into
urban fabric, industrial or commercial fabric, green urban
areas, and so forth. The dataset of wireless cellular network
used in this paper was collected from 2013 to 2014, so the

TABLE 1: Key notations.

Notation Description

G Graph of a network
N Numbers of nodes
T Numbers of network TM
T t The tth traffic vector
R Spatial encoding
P Timestamp encoding
d Dimensions of traffic vector
ω Length of input sequence
l Length of target sequence
E Sum of different encodings
W ∗ Weight of fully connected layer
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closest CLC2012 was selected. Due to some land changes from
2012 to 2014, some areas may be in an overlapping position of
the two lands. In order to determine the functional types of
such lands, we combine Google Maps from February 2014 to
collect PoIs in the vaguely delineated areas. To the end, the
selected functional areas of the wireless dataset are shown in
Table 2. Then, we list the functional area pairs formed by
source and destination region and number them. Finally, we
constructed the spatial encoding of functional area R ¼ F11;f
F12;…; FNNg, where Fij represents the number of functional
area pairs from region i to region j. We also normalize R as we
do for the backbone network dataset.

Network traffic series are highly correlated with time
changes. Statistical models, such as ARIMA, can learn
some regression features of previous time series. However,
the features it learned do not correspond to time. For exam-
ple, there is usually a peak in network traffic between 9 and
10 am, which corresponds to people’s working hours. We
add easily available timestamp information encoding as fea-
tures to network TM so that the model can learn the influence
of different times on traffic changes. In other words, we
enhance the model’s ability to perceive different timestamps
rather than just learning the periodic changes of traffic as time
steps move backward. One-hot is a commonly used encoding
method for the discrete temporal feature. However, one-hot
encoding is sparse. When considering multidimensional time
(month, day, and week), concatenating one-hot encoding
yields large dimensions. Using word embedding encoding
ensures that the time encoding dimension of each level is

the same as the input data. For example, one component Xt

of the input sequence represents the network TM sampled
in time t. It has d dimensions, which means there is d
origin–destination traffic flow in the network. Assuming
that its timestamp is P, for example, “2021-10-22 15:25”.
The encoding of the timestamp is shown in Figure 3. We first
decompose P in different granularity, for example, year,
month, day, hour, minute, and the day of the week. Then
the timestamps are input into different fully connected layers
with different embedding dimensions. Then we map them
into d-dimension embeddings. Finally, the time embeddings
are added together as the final timestamp encoding. We
design different granularity timestamp encodings to provide
different span time markers for subsequent self-attention
modules. We expect the self-attention module to learn differ-
ent traffic patterns through these markers, such as weekly and
daily patterns.

4.3. Learnable Positional Encoding. Figure 4 shows the training
process of RNN and self-attentionmodel, where X1,X2,…,Xt

Temporal
feature

encoder

Position
learner Integration

Temporal
encoding

Learnable
position
encoding

Self-attention
block

Future TM
Feature extractorSpatial info

Nodes

Timestamp

Historical TM

Spatial
feature

encoder

Spatial
encoding

FIGURE 2: Main framework of spatio-temporal self-attention network TM prediction model.

TABLE 2: The functional areas of wireless dataset.

Functional areas Related PoIs

Residential area Living quarters and villages
Business district Hotel, supermarket, and club
Industrial area Factory and garage
Suburb Farmhouse and farmland
Education area High school and college
Scenic spot Parkland

MonthDayWeekHourMin

Emb (S, d)

MM-dd
HH:mm:ss

Timestamp

Temporal encoding

Emb (H, d) Emb (W, d) Emb (D, d) Emb(M, d)

FIGURE 3: The encoding of timestamp.
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is the input sequence, H j
i is the jth hidden layer of time step i,

and Y1, Y2,…, Y t is the output. In the training process of
RNN, LSTM, and other recurrent neural networks, since the
solution of the current system state requires the results of
the previous time step, the input sequence will be fed into the
network in time order. This kind of model can distinguish the
before and after time relation of the input sequence. However,
in the self-attention mechanism used in this paper, the encoder
receives timing sequence data of different time steps simulta-
neously and calculates their similarity. It leads to the model’s
failure to capture the input sequence’s time association.

Adding positional encoding (shown as Pi in Figure 4) to
the encoder is an effective solution to the above problem,
which provides the position relation of sequence for the
encoder to ensure the normal training of the model. In addi-
tion, positional encoding could ensure the parallelization of
training and speed up the training of the model. Vaswani
et al. [19] use fixed positional encoding consisting of sine and
cosine functions. The common data processing method is the
sliding window method in the time-series prediction prob-
lem. If the data are not moved out of the window, then the
same data remain in the following input. The difference is
that it is shifted forward by one unit. Fixed position encoding
is weak in learning relative position relationships, so we use
another position encoding: learnable position encoding. We
add different positional encodings for the input sequence in
different encoders. First, we construct the tensor L ¼ L1;f
L2;…; Ldg, where d is the dimension of the input sequence.
We compare several initialization methods, such as normal
distribution initialization, xavier initialization, and uniform
distribution initialization. Different initialize methods have
little effect on the results. We chose the uniform distribution
and the positional encodings are initialized within [−1, 1].
The learnable positional encoding is trained along with the
whole structure during training. As shown in Figure 4, the
added positional encoding plays a role in providing location
relations. Multilayer encoders contain multiple levels of
position encoding, and we expect to improve the model’s
ability to learn position relationships at different levels in
this way.

4.4. Self-Attention Module. According to the previous analy-
sis, the temporal and spatial correlation between the input
and target sequences is significant in network TM prediction.
When the input sequence and the prediction sequence are
long, it becomes difficult for the model to learn the depen-
dencies of the sequence. The self-attention mechanism is
widely used in NLP tasks. In translation tasks, the self-
attention mechanism can calculate the similarity between
other words and the current word in an input sentence,
assigning different attention weights to different words. In
this way, self-attention could learn the dependency relation-
ship in the sentence. Furthermore, the self-attention mecha-
nism does not use recurrent structures to capture features. It
uses matrix multiplication to calculate the similarity of two
words. This approach shortens the distance between two
words to capture longer dependencies. Inspired by this
idea, we transfer the self-attention mechanism to the net-
work TM prediction problem. We treat the network TM at
the moment as a word and use the self-attention mechanism
to calculate the dependency of the long-term input sequence.

The self-attentionmechanism essentially reflects howmuch
each token pays attention to other tokens. Figure 5 shows the
calculation process of the self-attention mechanism. Suppose
X1; X2;…; Xt is the input sequence encoded by space–time and
position. E is formulated as the sum of all the encodings:
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E ¼ Rþ P þ L; ð4Þ

where R is the spatial encoding, P is the timestamp encoding,
and L is the positional encoding.

First, query, key, and value matrices are generated for
each token through different fully connected layers, which
are donated byQ, K , and V , respectively. In the case ofQ, the
equation is as follows:

Q ¼ X þ Eð ÞWQ; ð5Þ

where WQ is the weight of the fully connected layer that
calculates Q, K , and V are also calculated by the same for-
mula, using weights WK and WV , respectively.

Take X2 as an example, multiply Q2 by K i of each time
step to calculate the attention score, and then we can get the
attention of X2 to the input of other time steps. The output of
this layer can be expressed as:

Y i ¼ ∑
j
ai;jV j; ð6Þ

where i and j are the serial numbers of tokens, and ai;j is the
attention weight of the Xi to Xj. That is, the output is the
weighted sum of each value matrix. This method can effec-
tively capture the dependencies in a long sequence. The spe-
cific calculation process of attention score is shown in
Equation (7), where d is the dimension of network TM.
The dot product of the matrices is used to calculate the
attention score of the two matrices. After scaling, the atten-
tion score is multiplied by V as a weight to obtain the
weighted matching result.

Attention Q;K ;Vð Þ ¼ softmax
QKTffiffiffi

d
p

� �
V : ð7Þ

We can understand how the self-attention mechanism
captures the spatiotemporal dependence by analyzing the
computational process. Assuming that WQ and WK are the
weights of the fully connected layer forming query matrix
and key matrix, respectively, and X is the input sequence.
According to Equations (5) and (7), the calculation process
of attention with Ai and Aj is as follows:

Attentioni;j ¼ QiKT
j

¼ XiWQWT
kX

T
j|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

að Þ

þXiWQWT
k E

T
j|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

bð Þ
þ EiWqWT

kX
T
j|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

cð Þ

þEiWQWT
k Ej|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

dð Þ

; ð8Þ

where (d) in this equation contains the encodings of two
sequences: Ei and Ej, which reflects the model’s learning of
the spatiotemporal dependence of the two sequences.

Multihead attention modules are combined with several
self-attention modules. Assuming that attention modules use
h heads, note that h can divide d, which is the dimensions of
network TM embedding. The multihead attention module
divides the d dimensions of Q, K and V into h parts first, and
uses the Equation (7) to calculate the attention score, respec-
tively. Finally, the module contacts each result as its final
output. Multihead attention can play a role in ensemble
learning, prevent overfitting and help to extract multiple
features.

In order to optimize the temporal and spatial complexity
of the model, we use the self-attention mechanism with lin-
ear complexity proposed in [48]. The following equation
shows its calculation process:

E Q;K ;Vð Þ ¼ ρrow Qð Þ ρcol Kð ÞTVð Þ; ð9Þ

where ρrow and ρrow denote applying the softmax function
along each row or column of matrix, respectively. This mech-
anism has O dnþ d2ð Þ memory and O d2nð Þ computational
complexities, where n is the input length, d is the dimension
ofQ, K , and V . d is usually much less than n in the long-term
prediction, so thememory and computational complexity can
be approximated as O nð Þ. Compared with the original atten-
tion whose memory and computational complexity is O n2ð Þ,
the computational complexity is significantly reduced.

4.5. Feedforward and Output Layer. The subsequent structure
in the encoder is the feedforward layer, which contains two
fully connected layers. The activation function of the first layer
is rectified linear unit (ReLU), which can provide nonlinear
transformation. The feedforward layer can be described as the
following equation:

Z Xð Þ ¼ ReLU XW1 þ b1ð ÞW2 þ b2; ð10Þ

where X is the output of multihead attention module, andW ,
b are the weight and bias of the fully connected layer,
respectively.

In the language translation task, word2vec or other
methods are needed to encode each word first. Since there
is no complex embedding of traffic TM, we only use the
encoder structure. We use the linear layer to produce the
prediction results in the output module. ReLU is used as
its activation function.

4.6. Training Algorithm. The proposed SATMP is trained by
minimizing the mean square error (MSE) of the predicted
value bY and the ground truth Y . The loss function can be
defined by:

Loss ¼ 1
N

∑
N

i¼1
Y i −

bY i

� �
2
; ð11Þ

where N is the number of network nodes, and bY , Y repre-
sents the predicted value and the ground truth, respectively.

The training process of SATMP is described in
Algorithm 1.
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5. Evaluation

5.1. Datasets and Preprocessing. We use three publicly avail-
able and well-known traffic datasets to evaluate the perfor-
mance of the proposed algorithm. These three datasets are
summarized in Table 3. Abilene dataset [49] is sampled from
the Abilene Network and consists of 12 nodes and 15 links.
The network traffic matrix formed by it has 144 dimensions.
Abilene records the network TM from March 1th, 2004 to
September 10th, 2004 at 5min sampling intervals. Geant car-
ries research traffic from the European National Research
and Education Networks (NRENs) [50]. It contains more
network nodes and links and has 23 nodes linked by 38 links.
The TM of Geant has 529 dimensions. The data are taken in
15min steps starting on May 4th 2005 at 15:00 and ending on
August 31st 2005. Due to the discontinuity of the dataset sam-
pling, we select continuous data for the experiment instead of
using all the data. Specifically, we use Abilene data from May
1st 00:00 to May 28th 23:55, which contains 8,064 TM. For
Geant, we select data from June 1st 00:00 to June 28th 16:30,
which contain 2658 TM. The MItoMI telecommunications
dataset provides the directional interaction strengths between
different areas of Milan fromNovember 1st 2013 to January 1st

2014 [51]. The dataset divides Milan into 100× 100 grids and
records the interaction at a sampling interval of 10min. Since
the communication intensity of most regions is 0 most of the
time, we selected 20 active regions for study. We get a total of
8,640 TM with 400 dimensions.

The way we preprocess the data is as follows. First, we
perform a unit conversion on the dataset. The original values
are converted into MBit=s values on backbone network data-
sets. Then we normalize the TM by dividing its maximum
value. We also convert the timestamp to the “Europe/Rome”
timezone on the MItoMI dataset. Finally, we use a sliding
window to build the training dataset, as is shown in Figure 6.
Assuming that the dataset has a total of T TM, the sliding
window size isω, and the predicted window size is l. The values
ofω and l are determined by actual needs, and the relationship
between them in our study is ω ¼ l. Then we roll the sliding

window with stride = 1. According to the above assumptions,
the length of the dataset generated by our preprocess is
T − ω − l þ 1. We divide it into the training set, validation
set, and testing set according to the ratio of 6 : 1 : 3.

5.2. Experimental Details. We use Pytorch to build our model.
The loss function we choose is MSELoss. The AdamW algo-
rithm with decay learning rate is utilized to optimize the model.
In addition, we use dropout and gradient clipping to avoid
overfitting. The hyperparameter settings of the proposed
model are shown in Table 4.

Prophet [25], LSTM [52], and GRU [53] are selected to
compare with the proposed framework. Prophet is an addi-
tive model that can effectively capture the periodicity of time
series. LSTMmodel effectively alleviates the problems of RNN
gradient disappearance and explosion by adding gated struc-
ture and cell state. GRU simplifies the structure of LSTM and
achieves better results on some tasks.

We use the above models to train and test their perfor-
mance in predicting flow sequences of different lengths. The
predicted lengths of time we choose are 24, 48, 72, and 96 hr.
For the methods used for comparison, we tune their hyper-
parameters with a validation set for better results.

We evaluate the performance of network TM prediction
based on two metrics: MSE (Equation (11)) and mean abso-
lute error (MAE), which are defined as:

MAE ¼ 1
N

∑
N

i¼1
Y i −

bY i

��� ���; ð12Þ

where N is the number of network nodes, and bY , Y repre-
sents the predicted value and the ground truth respectively.

5.3. Results and Analysis. The prediction performance of all
methods is summarized in Table 5. The best result for each
prediction task is highlighted in bold in the table. Note that
the dataset changes due to the different predicted lengths, so
we only make horizontal comparisons and do not explore the
performance changes of each model as the sequence length
increases. Our proposed SATMP significantly reduces the
prediction error. Take the traffic prediction for 72 hr as an
example, the MSE of SATMP is 68%, 48%, and 50% lower
than that of Prophet, LSTM, and GRU on the Abilene. On
MItoMI, the MSE of SATMP is 61%, 27%, and 24% lower
than that of methods for comparison.

According to the experimental results, the MSE andMAE
of Prophet are very high. Prophet can model the periodic
features of historical data. However, it cannot use additional
information to capture the spatiotemporal association of

TABLE 3: Summary of used datasets.

Attribute Abilene Geant MItoMI

Network type Backbone Backbone Wireless
Number of nodes/regions 12 23 10,000
Number of links 15 36 -
Sampling interval/min 5 15 10
Time span/mon 6 4 2

Input: Historical network traffic X with a time span of T .

Spatial encoding R.
Temporal encoding P.

Output: SATMP model

1: t ¼ 1

2: for t ¼ 1 to T − 2ωþ 1 do

3: e ¼ t þ ω − 1

4: obtain the input sequence L ¼ Xt ;ð Xtþ1;⋯; XeÞ
5: obtain the target sequence Y ¼ Xeþ1;ð Xeþ2;⋯; XeþwÞ.
6: build the training instance L;fð R; Pg; YÞ by Equations (4).
7: end for

8: Initialize the trainable parameters in SATMP

9: Update the parameters in SATMP using backpropagation
algorithm with loss function Loss as Equation (11).

ALGORITHM 1: SATMP Training Algorithm.
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network TM, which leads to a high error. LSTM and GRU
have similar prediction performance, which proves the effec-
tiveness of their time-series modeling. Obviously, SATMP
significantly reduces MSE and MAE. By utilizing spatiotem-
poral encodings and self-attention mechanisms, SATMP can
better capture the potential features of the network TM.

Figure 7 shows the 48 hr prediction result of SATMP,
Prophet, LSTM, and GRU on the Abilene dataset. The blue
curves represent the real flow, while the curves in other

colors represent the predicted results of other methods. It
is evident that Prophet failed in long-term prediction. It can
only predict a general trend. All the predicted results are
basically the same and deviate greatly from the real value.
SATMP, LSTM, and GRU have similar prediction perfor-
mance before the second 18:00. However, after the second
18:00, the results of LSTM and GRU begin to show large
errors, which indicates that the accuracy of these two models
will decline when the prediction time is very long. The results
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FIGURE 6: Sliding window for building training dataset.

TABLE 4: Hyperparameter settings.

Hyperparameter Abilene Geant MItoMI

Batch size 32 32 32
Dropout 0.1 0.1 0.1
Encoder layer 8 6 8
Attention head 12 23 10
Attention dimension 2,048 2,048 2,048
Epoch 150 150 150
Learning rate 0.001 0.001 0.0001
Optimizer AdamW AdamW AdamW
Parameter clip True True True

TABLE 5: Prediction performance of all methods on three datasets.

Methods SATMP Prophet LSTM GRU

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Abilene

24 0.0114 0.0692 0.0284 0.1125 0.0114 0.0724 0.0146 0.0809
48 0.0118 0.0705 0.0279 0.1113 0.0271 0.1089 0.0235 0.1063
72 0.0095 0.0609 0.0295 0.1062 0.0181 0.0872 0.0189 0.0963
96 0.0081 0.0538 0.0329 0.1133 0.0165 0.0799 0.0165 0.0846

Geant

24 0.0033 0.0228 0.0046 0.0384 0.0041 0.0241 0.0042 0.0242
48 0.0028 0.0222 0.0042 0.0367 0.0034 0.0218 0.0039 0.0260
72 0.0025 0.0201 0.0056 0.0445 0.0032 0.0212 0.0043 0.0302
96 0.0023 0.0204 0.0045 0.0402 0.0031 0.0226 0.0033 0.0238

MItoMI

24 0.0067 0.0364 0.0298 0.0577 0.0094 0.0496 0.0089 0.0492
48 0.0070 0.0352 0.0224 0.0501 0.0097 0.0509 0.0094 0.0512
72 0.0069 0.0354 0.0177 0.0474 0.0094 0.0495 0.0091 0.0498
96 0.0066 0.0330 0.0222 0.0510 0.0089 0.0477 0.0090 0.0489

The values in bold are the values with the lowest error (MSE, MAE, respectively) among the four methods.
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demonstrate that SATMP has a more potent ability to extract
long-term correlation. Spatiotemporal encoding can effec-
tively provide spatiotemporal information to the self-
attention module and enhance the prediction performance.

Figure 8 shows the prediction of SATMP on Abilene
(48 hr with 576 time steps). It can be found that the traffic
of the backbone network conforms to certain rules, but there
is a lot of fluctuation. The prediction result confirms that
SATMP can better predict the fluctuation of irregular traffic.
It can cope with high burst traffic scenarios as shown in
Figures 8(b) and 8(c). The proposed algorithm makes full
use of the spatiotemporal characteristics and uses the self-
attention mechanism to capture its long-term spatiotemporal
dependence, so as to learn the properties of network traffic
more comprehensively. The aforementioned result shows that

SATMP has the advantages of high accuracy and long-term
prediction in complex networks.

In addition, we compare the hardware requirements of
LSTM with the proposed algorithm. The sampling interval
is 5min on the Abilene dataset. 24 hr traffic data contains
288 network TM, and 96 hr traffic data contains 1,152
network TM. Such a long sequence imposes massive mem-
ory consumption of graphics cards on LSTM. Take the
prediction of 96 hr as an example, LSTM occupies 14 GB
of video memory on average, sometimes more than 24 GB.
The average occupied memory of SATMP is 9 GB, saving a
lot of computation power. Besides, SATMP eliminates the
recurrent structure and can compute all inputs in parallel.
With the same number of parameters, it has a faster train-
ing speed. As discussed above, the model proposed in this
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FIGURE 7: The prediction (48 hr) of SATMP, Prophet, LSTM and GRU on the Abilene dataset.
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paper has a great advantage in consuming computational
power.

In the highly dynamic environment of IIoT, the network
changes over time. For example, the addition and departure
of nodes will affect the traffic of the entire network. There-
fore, our algorithm needs to be retrained after the network
changes greatly. Fortunately, the training process of our algo-
rithm is parallel, which has higher training efficiency and can
realize model iteration faster.

5.4. Ablation Study. To test the effectiveness of each module
in SATMP, an ablation experiment is designed in this paper.
We design two ablation models and test them on Abilene.
Model 1 deletes the spatiotemporal feature extraction module
of proposed framework.Model 2 replaces the learnable positional
encoding with fixed position code. At the same time, if

the removed modules involve neural networks, we use the
fully connected layer instead to ensure that the number of
parameters is roughly unchanged.

Figure 9 shows the results of ablation study. The result
confirms that the spatiotemporal feature extraction module
provides more additional features to the model, which can
significantly reduce the prediction error. Compared with fixed
positional encoding, learnable positional encoding has better abil-
ity to describe the temporal correlation of traffic sequence, which
is helpful to predict network traffic matrix more accurately.

6. Conclusion

This paper investigates the problem of long-term prediction of
network TM in large-scale IIoT networks. The 6G-enabled
IIoTwill containmany heterogeneous networks, making traffic

20

10

00:00 6:00 12:00 18:00 00:00
Time

Real
SATMP

Tr
af

fic
 (M

Bi
t/s

)

6:00 12:00 18:00

30

40

ðaÞ

20

10

0

00:00 6:00 12:00 18:00 00:00
Time

Real
SATMP

Tr
af

fic
 (M

Bi
t/s

)

6:00 12:00 18:00

30

40

50

ðbÞ

40

30

20

00:00 6:00 12:00 18:00 00:00
Time

Real
SATMP

Tr
af

fic
 (M

Bi
t/s

)

6:00 12:00 18:00

50

60

70

ðcÞ

40

30

20

10

00:00 6:00 12:00 18:00 00:00
Time

Real
SATMP

Tr
af

fic
 (M

Bi
t/s

)

6:00 12:00 18:00

50

60

70

80

ðdÞ
FIGURE 8: The prediction (48 hr) of SATMP on Abilene.
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prediction difficult. We provide a novel method by applying
the self-attention mechanism to resolve this issue. The self-
attention mechanism can reduce the distance of time-series
dependence. Inspired by that, we apply the mechanism to the
long-term prediction of IIoT network TM and propose
SATMP, a self-attention prediction model combining spatio-
temporal encoding. We show the effectiveness of SATMP for
long-term TM prediction with a detailed analysis and evalua-
tion on three backbone and wireless network datasets.
SATMP’s accurate long-term prediction results enable IIoT
networks to implement effective resource allocation, congestion
control, and attack detection. In addition, SATMP supports
parallel computing and can be deployed on edge IIoT nodes
for edge intelligence.

The data in 6G-enabled IIoT need to be computed securely
and quickly. Several learning frameworks have been proposed to
address this characteristic. For instance, federal learning is con-
sidered a key technology for the future of IIoT, which supports
the collaborative training of nodes while protecting data privacy.
We plan to combine self-attention mechanisms with Federal
learning for further IIoT network research in future work.

Data Availability

The datasets used in this study can be downloaded from
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