
Research Article
Image Compression for Wireless Sensor Network: A Model
Segmentation-Based Compressive Autoencoder

Xuecai Bao ,1,2 Chen Ye ,1,2 Longzhe Han ,1,2 and Xiaohua Xu 3

1Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang Institute
of Technology, 330099 Nanchang, Jiangxi, China
2School of Information Engineering, Nanchang Institute of Technology, 330099 Nanchang, Jiangxi, China
3Jiangxi Academy of Water Science and Engineering, 330029 Nanchang, Jiangxi, China

Correspondence should be addressed to Xuecai Bao; lx97821@126.com

Received 12 August 2022; Revised 27 September 2022; Accepted 16 February 2023; Published 25 October 2023

Academic Editor: Yuanlong Cao

Copyright © 2023 Xuecai Bao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aiming at the problems of image quality, compression performance, and transmission efficiency of image compression in wireless
sensor networks (WSN), a model segmentation-based compressive autoencoder (MS-CAE) is proposed. In the proposed
algorithm, we first divide each image in the dataset into pixel blocks and design a novel deep image compression network with
a compressive autoencoder to form a compressed feature map by encoding pixel blocks. Then, the reconstructed image is
obtained by using the quantized coefficients of the quantizer and splicing the decoded feature maps in order. Finally, the deep
network model is segmented into two parts: the encoding network and the decoding network. The weight parameters of the
encoding network are deployed to the edge device for the compressed image in the sensor network. For high-quality
reconstructed images, the weight parameters of the decoding network are deployed to the cloud system. Experimental results
demonstrate that the proposed MS-CAE obtains a high signal-to-noise ratio (PSNR) for the details of the image, and the
compression ratio at the same bit per pixel (bpp) is significantly higher than that of the compared image compression
algorithms. It also indicates that the MS-CAE not only greatly relieves the pressure of the hardware system in sensor network
but also effectively improves image transmission efficiency and solves the deployment problem of image monitoring in remote
and energy-poor areas.

1. Introduction

The wireless sensor network (WSN) is widely deployed in
many applications, such as ecological environment monitor-
ing, water quality monitoring, and mine safety monitoring
[1–4]. Image monitoring in WSN is an important topic in
the monitoring field. It has a visual effect and can provide
image information to the management platform. However,
the massive amounts of image information cause network
congestion. Although some novel technologies of congestion
control and packet reordering algorithms are proposed to
solve this problem [5–7], the image compression technology
in the image sensor device has attracted an increasing atten-
tion and is considered as an effective solution in terms of
improving energy and transmission efficiency. Until now,

many image compression algorithms forWSN have been pro-
posed [8]. However, owing to the functional limitations of
hardware equipment for WSN and the high energy consump-
tion of image transmission, it also poses significant challenges
to WSN deployment in remote areas with limited energy.

For traditional image compression techniques in WSN,
the research on image compression can be categorized as
lossless and lossy image compression. JPEG [9] and JPEG
2000 [10] are typical representations of lossy image com-
pression and have been widely applied to WSN. Aiming at
transmission efficiency and memory saving, lossy image
compression draws more attention in WSN than lossless
image compression. In particular, the emergence of image
compression techniques based on Deep Learning Models
(DLMs) provides a completely new direction [11].
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In the field of deep learning image compression, a great
number of efforts have been devoted to improving the reso-
lution of reconstructed compressed images. Using the Con-
volutional Neural Network (CNN) structure, the methods
of training Compact CNN (ComCNN) and Reconstructed
CNN (RecCNN) are proposed simultaneously in [12].
ComCNN mainly optimizes the compression effect, and
ReCNN is used to reconstruct high-quality images. Kuang
et al. propose a new model for a single-image Super-
Resolution (SR) task by utilizing the design of densely con-
nected convolutional networks (DenseNet) [13], which has
a lightweight structure and is extensively evaluated on data-
sets. They attempt to optimize the deep network and adjust
parameter settings to achieve trade-offs between image reso-
lution and running time. The advantage of deep CNNs lies
in its powerful capability to handle large-scale image data-
sets. These works, on the other hand, are complex, making
them difficult to deploy in WSN edge devices.

Currently, autoencoders based on CNN have become a
significant research interest, which are more simple than
deep CNN in network architecture. In an earlier period,
most learning autoencoders were used for dimensionality
reduction for high-efficiency image compression. On the
other hand, the autoencoder, with its relatively simple net-
work architecture, is also faster than CNN in the inference
process. Huang et al. propose a multiscale autoencoder
(MSAE) to improve the compression effect and adopt the
generative adversarial network (GAN) with multiscale dis-
criminators to perform the end-to-end trainable rate-
distortion optimization. This framework achieves excellent
reconstruction effects at a low bit rate [14]. Cheng et al.
use Principal Component Analysis (PCA) to generate an
energy-efficient representation for the CAE architecture to
achieve high coding efficiency, and the algorithm mainly
preserves the principal components in the model training
process and greatly improves the compression ratio [15].
Furthermore, when compared to the traditional deep CNN
architecture, CAE-based image compression is a complete
deep learning architecture that reduces its own network
layers [16]. Based on an autoencoder, the authors in [17]
append quantization and entropy rate estimation to the
CNN structure. Furthermore, in [18], a three-dimensional
convolutional autoencoder (3D-CAE) is proposed, which
has greatly improved the reconstruction precision. All these
algorithms mentioned above improve the network architec-
ture of the compressive autoencoder, which performs well in
reconstructed image detail extraction. In addition, the end-
to-end architecture also offers the possibility of deployment
for WSN. However, some of these algorithms will occupy a
great deal of memory at runtime, which impacts the effi-
ciency of image monitoring for WSN.

Moreover, most of the above-mentioned works focus on
the optimization of rate distortion, visual effect, and image
compression ratio, but the limited memory capacity of the
hardware system in the WSN is not considered. Aiming to
solve the above-mentioned problems, we propose a novel
MS-CAE algorithm to satisfy the demands of WSN image
monitoring in remote areas. The main contributions of the
proposed MS-CAE algorithm areas are as follows:

(1) To address the issue of large networks not being
deployed in sensor nodes due to functional con-
straints, we proposed a model segmentation-based
compressive autoencoder

(2) We proposed an asymmetric architecture for the
encoding and decoding networks in MS-CAE. We
design the simplified encoding network and the
more complex decoding network properly to
improve the resolution of the reconstructed com-
pressed image

The rest of this paper is organized as follows: Section 2
describes the related work of image compression. Section 3
presents the principles of the architecture of a compressive
autoencoder (CAE). In Section 4, we present a novel MS-
CAE image compression algorithm for image monitoring
in WSN. Section 5 evaluates the performance of the pro-
posed MS-CAE algorithm, followed by concluding remarks
in Section 6.

2. Related Work

2.1. Image Compression Based on Deep Learning. Recent
works on the CNN network have made contributions to
image compression, especially in DLMs. To achieve high-
quality image compression at low bit rates, Jiang et al. pro-
pose two CNNs as the pre- and postprocessing steps [12].
Toderici et al. utilize a long short-term memory (LSTM)
recurrent network to compress small patch images and also
adopt quantization to realize the decrease in the encoding
coefficient scale [19]. Li et al. are motivated by the character
of the local information content in a single image, and they
propose learning convolution networks for content-weight
image compression to solve the problem of encoder rate dis-
tortion [20]. The DSSLIC framework is used to obtain the
semantic segmentation map of the input image and encode
it as the base layer of the bitstream [21]. Sushma and Fati-
mah improve the reconstructed image detail information
by predicting chroma at the decoder, which serves as side
information for decoding chroma components [22]. These
algorithms optimize the quality of reconstructed images in
various aspects. For instance, these authors make great prog-
ress in the aspects of high compression ratio, compression
efficiency, high-resolution image, and detail image recon-
struction, whereas the operations mentioned before usually
consume a large amount of storage space in computer
equipment.

2.2. Image Compression Based on CAE. There exist numerous
works on variants of compressive autoencoders (CAE). In dif-
ferent ways, these techniques reduce the distortion of the
reconstructed image for lossy image compression. In [23],
Shi et al. introduce an efficient subpixel convolution layer
learned from an array of upscaling filters to upscale the final
low-resolution feature maps into the high-resolution output
image. Inspired by the work of Shi et al. [23], Theis and Shi
[16] utilize the CAE structure by optimizing quantization
and entropy rate estimation to acquire excellent training
model results. Following the above architectures, the authors
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in [17] append a nonlinear analysis transformation, a uniform
quantizer, and a nonlinear synthesis transformation to a con-
volutional network. Cheng et al. train the improved CAE
architecture to generate a more compact representation of fea-
ture maps, and they optimize the rate-distortion loss function
of CAE to improve image-coding efficiency [15]. An energy
compaction-based image compression using a convolutional
autoencoder is proposed. This work optimizes the CAE archi-
tecture by decomposing it into several down- and upsample
operations and proposes a normalized coding gain metric in
neural networks [24]. Based on the previous high-precision
CAE, Chong et al. [18] exploit a 3D-CAE architecture that
precisely achieves end-to-end joint spectral-spatial compres-
sion and reconstruction. These works in the literature [15,
18, 24] primarily employ a compact compression network
and various upsample operations to trade-off the optimization
of the compression ratio and rate distortion.

2.3. Image Compression Work in the Field of WSN. Efficient
DLM models will be applicable to the interconnection
between hardware systems and cloud devices. From the
requirements of image monitoring, our work is divided into
two aspects: edge devices and cloud-based devices. An edge
device is used to obtain image information [25] and cloud-
based device analysis image-coding coefficients [26]. Ding
et al. deploy DLMs to edge devices and cloud-based devices,
which advance the running speed of the corresponding
device [27]. However, high-performance DLMs usually
require numerous storage and computing resources, which
make the deployment work difficult on an edge device. To
solve this problem, many researchers attempt to improve
the efficiency of DLMs by pruning the convolution layers
or convolution kernels [28, 29]. Some works combine
gradient-based optimization [30, 31] and residual learning
[32] to implement steps to speed up inference in image com-
pression algorithms. These works have made great progress
toward obtaining excellent effects. Because a cloud-based
device is deployed near monitor operators, it is technically
reasonable for a decoder to obtain high-resolution images.

Through comparison and analysis, we found that the
CAE architecture is suitable for image compression in
WSN and presents excellent performance. Furthermore,
CAE is simpler than CNN in network architecture. There-
fore, we design a novel network architecture based on CAE
and propose an image compression algorithm based on a
model segmentation-based compressive autoencoder (MS-
CAE), which not only segments the model to alleviate the
pressure of the hardware system and promote the transmis-
sion efficiency of the sensor network but also improves the
image quality and monitoring energy efficiency, so as to
achieve the purpose of improving the energy efficiency for
WSN image monitoring.

3. Architecture of Compressive Autoencoder

The network architecture of a compressive autoencoder con-
sists of three modules: an encoder E, a decoder D, and a
quantizer Q:

E ℝN ⟶ℝM , 1

D ℝM ⟶ ℝ
N , 2

Q e⟶Q e 3

The encoder E maps the original image x ∈ℝ to a
latent representation e ∈ E x . The quantizer Q maps each
element of e to Q e , which generates the quantized coef-
ficients ê =Q e . Then, the decoder D attempts to recon-
struct the original image x̂ =D ê from the quantized
coefficients ê.

Figure 1 clearly illustrates the flow diagram of the CAE
network. The original image is gradually compressed by
the convolution layers to generate compressed data in the
encoder. Then, the compressed data is quantized through
the quantizer. Subsequently, the decoder reconstructs the
image through the decompressed data.

To assist understanding, we assume that the original
image dataset was encoded using linear mapping and a non-
linear activation function. As a result, the process of an
encoder producing compressed data can be defined as

ℝM = g Wi+2ℝ
N + bi+2 , 4

where ℝN and ℝM represent the original image and com-
pressed data of the original image, respectively. The weight
and the bias of the Conv3 layer are Wi+2 and bi+2, respec-
tively. Moreover, the corresponding node activation func-
tion is defined as g · .

After the encoding process, the quantizer transforms
compressed data into decompressed data. The decoder
obtains the decompressed data and calculates the recon-
structed image sample. Obviously, the decoding process is
the inverse of the encoding process, which is defined as

ℝ
N = g WT

j+2ℝ
M + bj+2 , 5

where ℝ
N
is the reconstructed image sample. The weight

and the bias of the DeConv3 layer are Wj+2 and bj+2,
respectively.

Next, we introduce the quantizer in Figure 1. The quan-
tization is one of the approaches to decrease the complexity
of encoding coefficients. The encoding network exploits the
rounding function in the early period of the deep neural net-
work. The rounding function is used to obtain the nearest
integer of the coefficient. It is denoted as

f x = round x, d , 6

where x and d are the coefficient and accuracy retained after
the decimal point, respectively. Thus, to quantize the coeffi-
cients in more detail, Agustsson et al. in [33] adopt the uni-
form scalar quantizer, which is similar with the rounding
function, as follows:

f xi = round xi , 7

3Wireless Communications and Mobile Computing



where x and i are the coefficient and the number of equal
points, respectively. Accordingly, f xi represents quantiza-
tion through equipartition to the nearest interval.

Moreover, Toderici et al. in [19] propose a stochastic
rounding function of binarization, which is written as

y ≈ y + ε, ε ∈ 0, 1 , 8

P ε = 1 = y − y 9

The stochastic rounding function is different from
above-mentioned two rounding functions. The operation
mainly uses the round-down method, namely, the integer
of not more than x. Furthermore, the stochastic rounding
function obtains round results by expectation x and random
probability ε.

In the process of quantization, the rounding function
exists more or less as a deviation. Therefore, rounding and
the uniform scalar quantizer have more deviations. Thus,
CAE uses the loss function to evaluate the train loss. From
the above description, we know that the input original image
sample is X x ∈ℝN , and the output reconstructed image is

X̂ x̂ ∈ ℝ
N
. CAE evaluates the loss rate between ℝN and ℝ

N

by the cross-entropy loss function and mean square error
(MSE) loss function. These two loss functions are defined as

J X, X̂ = −〠
n

i=1
xi log x̂i + 1 − xi log 1 − x̂i 10

J X, X̂ = 1
2〠

n

i=1
x̂i − xi

2
2 11

Following the above analysis, the loss function is mini-
mized to acquire an excellent trained result, which is written as

arg min
W,b

J W, b 12

4. MS-CAE Architecture and
Implementation Method

In this section, we propose an image compression network
architecture based on a model segmentation-based compres-
sive autoencoder (MS-CAE) for WSN. We first present the
proposed MS-CAE framework. Then, the corresponding
implementation process is described. Finally, we provide
the achievement of model segmentation and weight deploy-
ment for WSN.

4.1. MS-CAE Framework for WSN. The existing image com-
pression algorithms based on CAE mainly focus on com-
pression performance. However, few algorithms based on
CAE consider the limited computing resources and the prac-
tical deployment of WSN.

Therefore, we present a novel MS-CAE framework to
solve two problems:

(1) The image sensor node in the WSN cannot carry a
complete trained image dataset for the deep neural
network

(2) A cloud-computing platform makes it difficult to
parse and reconstruct high-quality images from a
simple network with insufficiently encoded data

We illustrate the proposed MS-CAE framework for
WSN in Figure 2. Firstly, we divide the image dataset into
several small pixel blocks by preprocessing the image. Then,
the encoding network implements image compression
through image feature extraction, quantification, and data
compression. Subsequently, the decoding coefficients are
obtained by the quantizer in the decoding network, and
then, they are used to reconstruct images by the data filtering
of the residual block network. In the implementation pro-
cess, the obtained weight parameters by training the MS-
CAE network are divided into two parts, namely, the encod-
ing and decoding networks. Accordingly, the weight param-
eter information in the encoding and decoding networks is
deployed to edge devices and cloud devices, respectively.
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Figure 1: The network architecture of CAE.
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4.2. MS-CAE Network Architecture and
Implementation Process

4.2.1. MS-CAE Network Architecture. The encoding and
decoding networks in traditional CAE architecture are sym-
metrical. The symmetrical CAE architecture, on the other
hand, necessitates a relatively high level of computation
complexity and storage space in edge devices. It is unsuitable
for an edge device with limited resources. To satisfy the
demand for the edge device and cloud device, we propose
a novel asymmetrical MS-CAE architecture, which is shown
in Figure 3. In the proposed MS-CAE architecture, we sim-
plify the encoding network. Meanwhile, we increase the
complexity of the decoding network to improve the resolu-
tion of the reconstructed compressed image. The detailed
description is as follows.

In Figure 3, after the above preprocessing data based on
pixel block segmentation, each picture is decomposed into
60 three-channel (RGB) pixel blocks. The encoding and
decoding networks generate three kinds of feature maps by
the convolution operation. These feature maps are 128 ×
128, 64 × 64, and 32 × 32.

In the MS-CAE network, there are five convolution ker-
nel units. As shown in Table 1, “ConvK/S P” stands for a
convolution layer with kernel size K × K , a stride of S and
a reflection padding size of P. For instance, “Conv5/2 p1.5”
is a convolution unit with 5 × 5 convolution kernel size, 2-
stride size, and 1.5 padding size.

Moreover, the reflection-padding mode is different from
zero-padding. The input matrix of the reflection-padding
mode is N , C,H in,W in , and the output matrix of the
reflection-padding mode is N , C,H in,Wout , where N is
the number, C is the channel number, and H and W are
the matrix height and width, respectively. The correspond-
ing padding mode is written as

Hout =H in + padding top + padding bottom, 13

Wout =W in + padding left + padding right 14

Furthermore, Figure 4 illustrates the zero-padding mode
and the reflection-padding mode. Actually, the filled coeffi-
cients in the reflection-padding mode follow the sequence
of left, right, top, and bottom. Since most deep networks
adopt the zero-padding mode, the boundary pixels cannot
accurately extract the coefficients through convolution oper-
ations, which causes the boundary-blurring effect. Thus, in
our proposed MS-CAE, we use reflection padding to com-
pensate for pixel gaps caused by boundary-blurring effects.
Moreover, by utilizing the reflection padding in the training
process, the boundary of the reconstructed image pixel
blocks does not cause pixel cracks and improves the overall
image quality.

4.2.2. Implementation Process

(1) Preprocessing Data: Pixel Block Segmentation. The pur-
pose of pixel block segmentation is to divide the training
images with pixel 720p (1280 × 720 × 3) into pixel 128p
(128× 128× 3). The specific operation is as follows: We first
fill the width of the image (1280 × 720 × 3 to 1280 × 768 × 3).
Then, the images are divided into small pixel blocks
(128 × 128 × 3). Subsequently, the batches of patches are
packed into the CAE-training network.

(2) Encoder Network. In the proposed MS-CAE in Figure 3,
the encoder network consists of 9 convolutional layers that
contain the labeled different convolution kernel units and
the subsequent nonlinear operation of the parameterized
rectified linear units. We adopt PReLU as an active function,
which is defined as

PReLU xi =
xi, if xi > 0,
aixi, if xi ≤ 0,

15

Residual block
network

Quantizer

Preprocessing of image datasets Encoding network

Decoding network

...

...

Edge device

Cloud computing
equipment

Image sensor
node

Carry weight
parameters

Analysis weight parameters
& upload image

Figure 2: MS-CAE framework of image compression for WSN.
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where xi is the input of the nonlinear activation function in
the matching channel i and ai is the gradient of the negative
axis of the activation function.

PReLU’s nonlinear operation is conducive to the extrac-
tion and retention of negative coefficients. Through the fea-
ture linear superposition of 128 channels 32 × 32 with two
similar Conv3/1 p1 convolution layers in three layers, the
feature matrix coefficients with a lower frequency are
retained as much as possible for image feature extraction.

(3) Decoder Network. The decoder of MS-CAE in Figure 3
reconstructs the 32 × 32 compressed feature maps obtained
by the encoder. The function of the convolution layer
between the encoder and the decoder network is to trans-
form 32 × 32 feature blocks into 64 × 64 feature blocks
before the process of the residual block network. As shown
in Figure 3, following 15 iterations of the residual block net-
work, 6 convolution layers are applied to increase the sam-
ple. The residual block network in the decoder relieves the
gradient-vanishing problem, which efficiently avoids degra-
dation in the next network layer.

The detailed description of the residual block network is
shown in Figure 5. It consists of three convolution layers.
Both the first and third convolution layers employ an 11-
convolution kernel with a stride length of 1. The second
layer uses a 3 × 3-convolution kernel with a stride length of
1. Three convolution layers are normalized and nonlinearly
activated by the PReLU function. Following the filtering of
the feature coefficients by the residual block network, the

64 × 64 feature maps of 128 channels with six Conv3/1 p1
convolution layers are used to effectively retain the nonre-
dundant and high correlation coefficients as the foundation
for reconstructing the image. Finally, the decoder obtains a
reconstructed image by using 4 convolution layers.

4.3. Model Segmentation and Weight Deployment for WSN.
As shown in Figures 2 and 3, we know that the proposed
MS-CAE is divided into two parts, namely, the encoder net-
work and the decoder network. Furthermore, the scale of the
designed encoder network is relatively small, and the decod-
ing network is more complex than the encoder network. The
purpose of this design is to consider the resource limitations
of an image monitoring node for the WSN in remote areas.
We train the novel MS-CAE network model and extract the
weight parameters of the whole model after several periodic
iterations. The weight parameters of the well-trained model
are divided into two parts, the weight parameters of the
encoding network and the decoding network. For the practi-
cal deployment of image monitoring for WSN, we require
the proposed MS-CAE model to be segmented. The encoder
and decoder networks in MS-CAE are deployed to the edge
device and cloud-computing device, respectively.

The divided weight parameters are then loaded into the
edge device’s encoding network and the cloud-computing
device’s decoding network. For remote monitoring, an edge
device is used to collect and compress image data from sen-
sor nodes, which are based on resource-constrained micro-
controllers. A cloud-computing device usually has strong
computing capability and large storage capacity. Thus, a
cloud-computing device is used to parse and restore a large
number of reconstructed images.

Therefore, in order to reduce the burden of the edge
device in WSN, the relatively small-scale encoding network
model parameters are deployed to the edge device. In addi-
tion, to improve the quality of the reconstructed image, the
weight parameters of the more complex decoding network
model are deployed to the cloud device.

5. Experiment Result

5.1. Dataset. Considering the deployment work of the edge
device in WSN, for our experiments, we chose a relatively

15 Iteration

Conv5/2 p1.5
Conv3/1 p1
Conv5/1 p2

ConvTransposed 2/2 p1

Conv3/1 p264 × 64 32 × 32128 × 128

3 64 128 128 128 128 128 128 128 32

64

128

128128128128128128
32 256 16 3

Encoder

Decoder

Residual block

Quantizer

Figure 3: MS-CAE network architecture for enhancing decoder feature extraction.

Table 1: Description of different convolution kernel units.

Name
Kernel size
(K × K)

Stride
(S)

Padding
size (P)

Conv5/2 p1.5 5 × 5 2 1.5

Conv3/1 p1 3 × 3 1 1

Conv5/1 p2 5 × 5 1 2

Conv3/1 p2 3 × 3 1 2

ConvTransposed 2/2 p1 2 × 2 2 1

6 Wireless Communications and Mobile Computing



small image dataset (yt_small_720p) to train and evaluate
the performance of the proposed MS-CAE. The dataset
covers seven categories: portrait, cartoon, game, natural
scenery, advertisement pattern, city scene, and medical
image. Furthermore, it collects 2285 images with a resolution
of 1280 × 720. According to the above introduction of pixel
block division, we train the proposed MS-CAE network
using 60 pixel blocks for each image. In the testing process,
we use the Kodak 720p dataset with high-resolution photo-
graphs. All procedures are implemented in PyTorch. Each
model is trained for 143 epochs on the NVIDIA GeForce
RTX 2070 with Max-Q Design GPU.

5.2. Evaluation Indicators. To verify the effectiveness of the
proposed MS-CAE, we study the performance with respect
to mean square error (MSE), average loss, peak signal-to-
noise ratio (PSNR), and structural similarity index measure-
ment (SSIM) for reconstructed compressed image quality.
These evaluation indicators are written as follows:

MSE = 1
n
〠
m

i=1
wi yi − yi , 16

Avglossper patch =
1
60〠

60

i

MSElossper patch, 17

PSNR = 10 × log10
2n − 1 2

MSE , 18

SSIM x, y =
2μxμy + c1 2σxy + c2

μ2x + μ2y + c1 σ2x + σ2y + c2
, 19

where n is the number of samples and yi and ŷi are the
real value and predict value, respectively. In (19), μx and
μy refer to the average values of x and y, respectively.
Accordingly, the σ2x is the variance of x and σ2y is the var-

iance of y. σxy is the covariance of x and y. The c1 = k1L 2

and c2 = k2L 2 are constants used to maintain stability,
where L is the dynamic range of the pixel value and k1 =
0 01 and k2 = 0 03.

5.3. Results

5.3.1. Evaluation for Average Loss Rates. The mean square
error is calculated by (16) to measure the error between
the real coefficients and the reconstructed coefficients. Aver-
age loss reflects the difference in loss between the original
image and the reconstructed compressed image. Then, the
average loss of the whole image is evaluated by calculating
the average loss of 60 pixel blocks by (17). The training loss
of a single image can be estimated by averaging the loss of 60
pixel blocks. In Figure 6, we present the average loss of each
pixel block between the MS-CAE and CAE models in train-
ing over 143 epochs. As shown in Figure 6, the average loss
of MS-CAE gradually stabilized and was less than CAE after
80 training epochs. Namely, the training effect of each pixel
block of our proposed MS-CAE is better than that of CAE.
Moreover, Figure 7 shows the comparison result for the
average loss for 24 Kodak images in the test dataset. The
result in Figure 7 shows that the average loss of the proposed
MS-CAE is obviously lower than that of the CAE.

5.3.2. Quality Evaluation of Reconstructed Images. According
to the indicators of PSNR and SSIM in (18) and (19), we
evaluate the quality of the reconstructed compressed image
for our proposed MS-CAE by setting different bits per pixel
(bpp). PSNR is a comprehensive, objective image evaluation
indicator that is based on the difference between the corre-
sponding pixels. SSIM focuses on full-reference image qual-
ity, which evaluates image similarity based on luminance,
contrast, and structure. As a result, these two indicators eval-
uate the quality of reconstructed compressed images from
different perspectives, with higher indexes indicating less
distortion. Furthermore, we compute the average PSNR
and SSIM values for 24 Kodak images to validate the

0 0 0 0

0 1 2 0

0 3 4 0

0 0 0 0

(a) Zero-padding

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

(b) Reflection-padding

Figure 4: Two kinds of padding mode.

Residual
block

Conv1
1/1 BatchNormal Conv1

3/1 p1 BatchNormal Conv1
1/1 BatchNormalPReLU PReLU PReLUSUM

+ + +

Figure 5: Residual block network.
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performance of five algorithms. The bpp represents the ratio
of the number of valid bits in a compressed image to the
total number of pixels. Thus, the image compression ratio
can also be reflected by the bpp value. The higher bpp value
represents a lower image compression ratio and vice versa.

To further verify the performance of the reconstructed
compressed image, we compare MS-CAE with JPEG, JPEG
2000, CAE, and Toderici’s Full-Resolution Image Compres-
sion with Recurrent Neural Networks (FRIC-RNN) [19].
Figure 8 depicts the PSNR comparison value of recon-
structed images at various bpp. It can be seen that the PSNR
values of MS-CAE are significantly higher than those of
JPEG and FRIC-RNN image compression algorithms.
Between 0.1042 and ~0.7083 bpp, the reconstructed image
quality of MS-CAE is better than that of CAE and JPEG
2000. The results also show that the proposed MS-CAE out-
performs other algorithms in terms of high compression
ratio. Although the PSNR of MS-CAE is slightly lower than

that of CAE and JPEG 2000 in the range of 0.7083~1.0 bpp,
the PSNR performance in the range of 0.7083~1.0 bpp
which represents a low compression ratio is not a cause
for concern for WSN. Furthermore, Figure 9 illustrates the
SSIM values of reconstructed images at different bpp.
Figure 9 shows that the proposed MS-CAE’s structural sim-
ilarity is greatly improved in the range of 0~1.0 bpp and only
slightly lower than that of CAE in the range of 0~0.4 bpp.
The reason is that since the proposed MS-CAE algorithm
adopts residual block network iterations in the decoding
process, it can reduce the network generalization to a small
range and is conducive to the feature extraction of high-
correlation coefficients.
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Therefore, from the above results, our proposed MS-
CAE not only improves the decoding network performance
of the reconstructed compressed image but also achieves
the low-complexity requirement of the encoding network
for energy-limited WSN deployment in remote areas.

5.3.3. Visual Effect of Reconstructed Image. In this section, we
present the comparison of visual effects between MS-CAE
and CAE, JPEG, and JPEG 2000 at 0.3125 bpp for recon-
structed images using the Kodak image dataset. The overall
comparison results are shown in Figure 10. It can be seen
from Figure 10 that the visual effect of the proposed MS-
CAE algorithm is the best at a low 0.3125 bpp. This is
because the MS-CAE effectively avoids the boundary-
blurring effect through reflection-padding. The visual effect
of the JPEG algorithm has severe image information distor-
tion. The reason for the phenomenon is that the JPEG algo-
rithm uses an 8 × 8 matrix of the Discrete Cosine Transform
(DCT) to produce a boundary-blurring effect when the pixel
blocks are spliced. The original image is compressed by the
traditional CAE architecture in Figure 10(a). We can clearly
see that the chroma and pixels of the reconstructed com-
pressed image are severely distorted at 0.3125 bpp. We use
the JPEG algorithm to compress and reconstruct the same
image, as shown in Figure 10(b). Clearly, the PSNR of the
reconstructed image in Figure 10(b) is higher than that of
the CAE in Figure 10(a). However, because of the
boundary-blurring effect caused by the DCT, the SSIM value
of JPEG in Figure 10(b) is slightly lower than that of CAE in

Figure 10(a). The visual effect of the reconstructed image for
JPEG is similar to that of CAE, as shown in Figures 10(c)
and 10(d). JPEG 2000’s vision effects are also comparable
to the proposed MS-CAE. This is because the overall vision
effect of the JPEG 2000 algorithm improves significantly as
a result of the algorithm’s use of the preprocessing proce-
dure, coding, and quantization mode. Furthermore, by uti-
lizing the residual block network and sufficient train
epochs, the proposed MS-CAE algorithm avoids block
effects and maintains detail elements.

In order to further verify the performance of restoring
the image detail texture part, we take the character image
in the Kodak image dataset as an example, and the compar-
ison results are shown in Figure 11. Figures 11(a)–11(d)
depict the visual effects of CAE, JPEG, MS-CAE, and JPEG
2000, respectively. Figures 11(a) and 11(b) show that the
reconstructed image details are not very clear. Their effects
in Figures 11(a) and 11(b) are worse than those of MS-
CAE and JPEG 2000 in Figures 11(c) and 11(d). From
Figures 11(a)–11(d), we know that the proposed MS-CAE
algorithm is much clearer in terms of eyelash and hair tex-
ture than CAE, JPEG, and JPEG 2000 and has a much higher
SSIM value than other algorithms while still maintaining
good PSNR performance.

5.3.4. Complexity Analysis of Algorithm. We know from the
above sections that our proposed MS-CAE clearly distin-
guishes itself from the traditional symmetric CAE architec-
ture, and the corresponding encoder and decoder networks

(a) CAE (PSNR: 28.67 dB, SSIM: 0.8301) (b) JPEG (PSNR: 28.35 dB, SSIM: 0.76)

(c) MS-CAE (PSNR: 29.94 dB, SSIM: 0.8718) (d) JPEG 2000 (PSNR: 30.15 dB, SSIM: 0.8215)

Figure 10: Visual effect comparison of Kodak image at 0.3125 bpp.
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are asymmetric architectures. The purpose of designing the
asymmetric architecture is to reduce the parameters of the
encoder network for the deployment of an edge device in
WSN and to utilize the resource advantages of a cloud-
computing device. The encoder network of the proposed
MS-CAE reduces the number of network layers, channels,
and feature iterations and further improves the computa-
tion complexity of image compression. Then, the decoder
utilizes three layers of a small residual block network to
solve the problem of parameter redundancy and insuffi-
cient analytical accuracy so that the quality of the recon-
structed image is improved. To analyze the computing
complexity of the proposed MS-CAE, we evaluate the
average running time of the above-mentioned algorithms
in the same experimental environment. The results are
shown in Table 2.

As shown in Table 2, the average running time of encod-
ing an image with the proposed MS-CAE is shorter than that
of JPEG and JPEG 2000 when using the same computing

resource. Although our proposed MS-CAE algorithm con-
sumes slightly more than CAE in the time of single image
compression, the accuracy of the reconstructed image is bet-
ter than that of JPEG and JPEG 2000 at low bpp. This con-
sequence results from many operations of the JPEG and
JPEG 2000 image compression algorithms, such as bright-
ness matrix quantization, Huffman coding, DCT, or discrete
wavelet transform (DWT). The computation complexity of
these operations is high.

PSNR: 29.56 dB
SSIM: 0.8450

(a) CAE

PSNR: 27.89 dB
SSIM: 0.78

(b) JPEG

PSNR: 32.4407 dB
SSIM: 0.9010

(c) MS-CAE

PSNR: 34.62 dB
SSIM: 0.8820

(d) JPEG 2000

Figure 11: Visual effect comparison of Kodak image details at 0.3125 bpp.

Table 2: The average running time of encoding an image for
different image compression algorithms.

Algorithm Average time (s)

JPEG 1.25

JPEG 2000 26

CAE 0.56

MS-CAE 0.67
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6. Conclusions

In this paper, a model segmentation-based compressive
autoencoder (MS-CAE) image compression algorithm for
image monitoring of WSN in remote areas is proposed.
We first present the MS-CAE network architecture, which
considers the limited computing resources and the practical
deployment of WSN. Then, we provide the implementation
method for the MS-CAE network. The decoder with a resid-
ual block network optimizes the problem of vanishing gradi-
ent and gradient exploration. Finally, we split the trained
network model and deploy the weight parameters of the
encoder and decoder into the edge device and cloud-
computing device, respectively. Moreover, for the purpose
of obtaining a high-resolution reconstructed compressed
image, we appropriately increase the complexity of the
decoding network. In addition, we also compare the perfor-
mance with JPEG, JPEG 2000, FRIC-RNN, and CAE algo-
rithms between 0 and ~1 bpp. The experimental results
show that the MS-CAE improves image resolution, com-
pression performance, and transmission efficiency. Based
on model segmentation, the designed model MS-CAE has
achieved excellent performance in resource savings for edge
hardware devices. It also has the ability to completely
express the image content. Therefore, it also indicates that
the proposed approach effectively improves the monitoring
efficiency of long-term environmental image monitoring
for WSN.

Data Availability

The image dataset (yt_small_720p) used to support the find-
ings of this study are available from: https://drive.google
.com/file/d/1wbwkpz38stSFMwgEKhoDCQCMiLLFVC4T/
view.
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