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In this paper, an Over-the-Air Computation (AirComp) scheme for fast data aggregation is considered. Multisource data are
simultaneously transmitted by single-antenna mobile devices to a single-antenna fusion center (FC) through a wireless multiple-
access channel. The optimal power levels at the devices and a postprocessing scaling function at the FC are jointly derived such that
mean square error of the computation is minimized. Different than the existing approaches that rely on perfect channel state
information (CSI) at the FC and assume that the devices’ optimal power levels can be selected from an infinite solution set, in the
present paper, it is assumed that only quantized CSI is available at the FC and that the aforementioned optimal power levels lie in a
finite discrete set of solutions. To derive the optimal power levels and FC’s scaling factor, a difficult nonconvex constrained
optimization problem is formulated. An efficient and robust solution to quantization errors is developed via the deep reinforce-
ment learning framework. Numerical results verify the good performance of the proposed approach while it exhibits a significant
reduction in the required feedback.

1. Introduction

The sixth generation (6G) of wireless communications is
foreseen to accommodate a huge number of mobile devices
within the context of the so-called internet-of-things (IoT)
for enabling novel and demanding applications such as smart
cities, interconnected autonomous vehicles, and so forth [1].
These devices require the aggregation of massive data dis-
tributed to them, to support their functions. To that end,
a promising technology called Over-the-Air Computation
(AirComp) has recently emerged for fast wireless data aggre-
gation [2, 3].

AirComp exploits the signal superposition property of
the multiple-access channel (MAC) between the devices
and a fusion center (FC) for averaging their simultaneously
transmitted data over the wireless medium. By properly
applying processing at both the devices and the FC ends,
AirComp can be used to also calculate different data func-
tions from their average that belong to the class of the so-
called nomographic functions, for example, geometric mean

and polynomial expressions. Recent works in the field of
AirComp have expanded the original ideas in Nazer and
Gastpar [2] and Soundararajan and Vishwanath [3] under
different system models [4–7].

To deal with the fading characteristics of the wireless
medium, the work in Cao et al. [8] and later works in the
federated learning domain [9, 10] presented optimized
power control schemes for AirComp systems by minimizing
the computation error at the FC. This presented significant
performance gains since it avoided the suboptimal approach
of channel inversion power control, used in the previous
works [4–7].

On the other side, the approaches in Cao et al. [8–10]
they require perfect channel state information (CSI) at the
FC side. This requirement can be very restrictive, especially
when the CSI is typically estimated at the devices from the
downlink training symbols and then has to be fed back to the
FC. If highly accurate CSI is fed back to the FC, the required
overhead could be extremely high. In the literature of
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communication systems, feedback mechanisms have been
developed based on quantized CSI (QCSI) [11, 12]. In such
approaches, the estimated CSI is quantized to one of the
known states and then only the index of the detected state
is fed back, thus reducing the required overhead. The latter
comes at the cost of inferior performance, if no robust meth-
ods to quantization errors are used. AirComp schemes with
QCSI have yet to be developed and this is the first objective of
this paper.

Furthermore in Cao et al. [8–10], the optimal power
levels at the devices are selected from an infinite space of
values. Given that these devices are mostly of low hardware
complexity/capabilities, for example, sensors, it is highly
probable that they can support only a limited finite number
of power levels. This perplexes the derivation of the optimal
setup for the considered AirComp regime since it requires
the solution to difficult discrete optimization problems.
Moreover, it is very challenging to achieve satisfactory per-
formance, due to the reduced solution set compared to the
original approaches. Contrariwise, such an approach results
in reduced overhead for feeding back the optimal power
levels to the mobile devices. Such solutions are not yet avail-
able for AirComp systems and their development is the sec-
ond objective of the present paper. Analytically, the
contributions of this work are as follows.

An IoT network applying AirComp over a fadingMAC is
assumed based on a single antenna FC and single antenna
devices. The devices simultaneously transmit their sensing
data to the FC to calculate their average value. The objective
is to determine the optimal transmit power levels for
the devices and the postprocessing scaling factor applied at
the FC given that the FC has only QCSI knowledge and the
devices can set their transmit power levels from a finite dis-
crete set. The optimal transmit power levels and the FC
center’s scaling factor are jointly derived such that the
mean square error (MSE) of the computation is minimized.
To that end, first a difficult nonconvex constrained optimi-
zation problem is defined with the view to minimize the MSE
given the QCSI knowledge and the discrete set of transmit
power levels. Then, a solution to the defined problem is

developed based on the deep reinforcement learning (DRL)
framework [13]. The DRL-based solution is able to exploit
the computational power of the deep neural network (NN) is
order to efficiently solve the difficult optimization problem
while being robust to the CSI imperfections due to the quan-
tization. Overall, this paper aims to show the efficacy of the
DRL in providing better suboptimal power level suggestions
compared with the typical scheme (i.e., direct inference of
the optimal AirComp power control policy with the QCSI
values as input) in terms of MSE. The comparisons are con-
ducted with realistic system assumptions, including coarse
CSI knowledge and discrete power levels. Numerical results
show that the performance of the proposed approach is very
satisfactory under coarse QCSI knowledge when compared
to the perfect CSI approaches and their extensions to the
QCSI case.

The rest of the paper is organized as follows: Section 2
describes the considered system model and formulates the
problem to be solved. Section 3 derives the DRL-based algo-
rithmic solution to the defined optimization problem. Sec-
tion 4 presents the numerical results and Section 5 concludes
this work.

2. System Model and Problem Formulation

An AirComp scheme is considered over a MAC based on
which K single-antenna mobile devices are sending informa-
tion to a single-antenna FC (Figure 1). Let us assume that the
devices are measuring a set of time-varying parameters of
the environment they are deployed to. The FC aggregates the
received information with the view to calculate the average of
the measured data from the mobile devices. That is, in time-
slot t, the FC calculates the function

f tð Þ ¼ 1=Kð Þ ∑
K

k¼1
sk tð Þ; ð1Þ

where sk ¼ g dk tð Þð Þ, dk tð Þ is the measurement at node k, 1≤
k≤K , at timeslot t and g ⋅ð Þ is a scaling function applied for
power control. The function g ⋅ð Þ is actually a linear and
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FIGURE 1: System model. The IoT devices are measuring time-varying parameters that are transmitted with device-specific power pk over
channel hk. The FC aggregates the received signals and applies a denoising factor η.
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uniform to all devices normalization operator such that the
variables sk tð Þf g are of zero mean and unit variance. Then,
the FC is able to recover the desired mean value by simply
applying a de-normalization operation in Equation (1), that
is,

ef tð Þ ¼ g−1 f tð Þð Þ; ð2Þ

where g−1 ⋅ð Þ is the inverse function of g ⋅ð Þ. The received
signal at FC, at timeslot t, is given by

y tð Þ ¼ ∑
K

k¼1
hk tð Þwk tð Þsk tð Þ þ z tð Þ; ð3Þ

where wk tð Þ¼
ffiffiffiffiffiffiffi
pk tð Þ

p
h∗k tð Þ

hk tð Þj j , pk tð Þ 2Rþ is the transmit power of

device k, 1≤ k≤K , ⋅ð Þ∗, hk tð Þ is the channel coefficient of
channel k (also called perfect CSI) and ⋅j j denote the conju-
gate and the absolute value of a complex number, respec-
tively and z tð Þ is a complex additive white Gaussian noise
variable at the FC of zero mean and variance σ2. Upon
receiving y tð Þ, the FC applies a denoising factor η tð Þ for
recovering the average measurement by the devices. Thus,
the signal at the FC after postprocessing is given by,

bf tð Þ ¼ ∑
K

k¼1

ffiffiffiffiffiffiffiffiffiffi
pk tð Þp

K
ffiffiffiffiffiffiffiffi
η tð Þp hk tð Þj jsk tð Þ þ z tð Þ

K
ffiffiffiffiffiffiffiffi
η tð Þp ; ð4Þ

where the scaling factor K is introduced for averaging. As it is
evident, the values of the power allocation pk tð Þ, 1≤ k≤K
and denoising η tð Þ variables have to be determined in order
to apply the AirComp scheme. A common approach for
deriving the values of the required variables is by the mini-
mization of the MSE between the calculated average of the
transmitted data bf tð Þ in Equation (4) and the actual one f tð Þ.
Under the assumption of statistically independent observa-
tions sk tð Þf g among the users, the instantaneous MSE can be
shown to be given by,

MSE tð Þ ¼ E bf tð Þ − f tð Þ
� �

2
n o

¼ 1
K2 ∑

K

k¼1

ffiffiffiffiffiffiffiffiffiffi
pk tð Þp

hk tð Þj jffiffiffiffiffiffiffiffi
η tð Þp − 1

 !
2

þ σ2

η tð Þ

" #
;

ð5Þ

where E ⋅f g is the expectation operator.
By dropping the time index t for simplicity and based on

Equation (5), the values of the power allocation pk, 1≤ k≤K
and denoising η variables can be derived as the solution to
the following minimization problem:

P1ð Þ : min
pk≥0;η>0

∑
K

k¼1

ffiffiffiffiffi
pk

p
hkj jffiffiffi
η

p − 1

� �
2
þ σ2

η

s:t: pk ≤ P̄k; 8k 2 K;

ð6Þ

where P̄k is the power level of each sensor.

This problem is nonconvex since the sensor power vector
pkf g and the denoising factor η are coupled in the objective

function. On to top of this, problem P1ð Þ requires CSI knowl-
edge at the transmitter’s side. The required CSI is estimated
at each device via training symbols transmitted from the FC
at the downlink. Thus, by exploiting the uplink–downlink
channel reciprocity, the devices estimate the required CSI
and then, they feed it back to the FC for solving P1. If perfect
(or highly accurate to be more practical) CSI is assumed at
the FC, the feedback phase results in huge communication
overhead. To that end, in this paper, we assume a QCSI
feedback estimation scheme based on a predetermined QCSI
codebook.

Let us now assume that the FC and the devices have
knowledge of this predetermined QCSI codebook. Based
on the estimated CSI via the previously described procedure,
each device locates the closest representative entry in the
codebook and feeds back to the FC only the index associated
with the detected QCSI state requiring reduced communica-
tion overhead.

By straightforwardly applying the closed form of the
solution in Cao et al. [8] for P1 under QCSI information,
the performance exhibits severe degradation, especially for
very coarse CSI quantization. Moreover, the situation is fur-
ther perplexed if it is assumed that the devices can set their
power levels through a discrete and finite codebook. This
results to a feasible solution set for P1 that is discrete and
thus, in a very difficult optimization problem with no known
efficient solution that has, in general, exponential complexity
for its solution. The defined problem to be addressed under
the QCSI and finite power levels set is defined as:

P2ð Þ : min
pk≥0;η>0

∑
K

k¼1

ffiffiffiffiffi
pk

p bhk��� ���ffiffiffi
η

p − 1

0@ 1A2

þ σ2

η

s:t: pk 2Pk 8k 2 K;

ð7Þ

where Pk ¼ Pk; 1;
È

…; Pk;Mg is the set of discrete power

levels for the kth device, bhk is the QCSI feedback of channel
k, M is the number of power levels assumed to be the same
for all the devices without generality loss and Pk;m 2 0;½ P̄k�,
for 1≤m≤M.

In the following, a solution will be developed for solving
P2 based on the DRL framework that effectively deals with
the QCSI errors and the discrete levels of the devices’ power.

3. DRL-Based Solution

In this section, the solution to P2 is derived via a deep Q-
learning (DQL) method. DQL is a DRL method that utilizes
a NN as a quality function estimator (Q-value) [14]. In prin-
ciple, the deep Q-network (DQN) agent observes the wireless
environment in the form of a state s2 S and performs an
action a2A, where S and A correspond to the state and
action spaces, respectively [15]. Then, depending on the
quality of the performed action, the agent receives a reward
r. The DQL method involves the Bellman equation, given by
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Qt st; atð Þ¼ 1 − αð ÞQt−1 st; atð Þ
þ α rð st; atð Þ þ γmax

a0
Q stþ1; a0ð Þf g; ð8Þ

where st is the state of the environment at time t and at is the
action performed by the agent. The hyperparameters α2 0;½
1� and γ 2 0;½ 1� correspond to the learning rate and discount
factor and are used as a trade-off between previous Q-values
Qt−1 st;ð ð atÞÞ, immediate rewards r st ;ð ð atÞÞ and the optimal
future rewards γmaxa0 Q stþ1;ðf a0Þg.

The Bellman equation in practice quantifies the quality of
being in state st and performing the action at , designating the
learning strategy framework. The DQN agent interacts with
the environment in a trial-and-error process, ideally per-
forming all possible actions A from all possible states S.
Therefore, the agent gains experience regarding the favorable
and disadvantageous actions from any current state through
the reward function during the training phase of the DQL
algorithm [16]. Regarding the deep learning context, two
identical (in dimensions) NNs are involved: (i) the Q-
network which is used to estimate the current best action
(considered to contain the input features) and (ii) the target
Q-network which is used to estimate the next action (or
action policy) that will return the maximum long-term
reward (considered to contain the output labels). Once the
training phase of the DQL algorithm has been finalized and
the hyperparameters γ and α of the Bellman equation have
been stabilized, the pretrained agent may be utilized for
inference purposes in order to determine the action selection
policy.

A solution for P2, is derived based on a DQN agent,
located at the FC which interacts with the wireless environ-
ment. The design parameters of the DQN agent may be
described:

State space: The state space describes the wireless envi-
ronment from the communications’ perspective. In the pro-
posed solution, the state space includes the combined QCSI
and power information of each wireless sensor. At a given
time t, the system space can be expressed as st ¼ s1;½ s2;…;
sK � with sk being related to the power pk 2Pk and channel
coefficient hk of sensor k. The value of the sensor k QCSI is
represented by bhk ¼W hkj j2ð Þ, where W ⋅ð Þ is a quantization
function that depends on the number of quantization bits J .
The set of QCSI values is also defined as bH ¼ 0;f 1;…; 2J − 1g.
The state values of sensor k can be then derived by sk 2Pk ×bH ; 8k (all possible states are 2JK). In this context, the DQN
agent at the FC receives the combined information related to
the QCSI and power values for all sensors (Figure 1).

Action space: Upon observing the system state, the DQN
agent selects an action during a specific training episode.
Specifically, at a given time step t, a discretized power level
is selected by the agent and assigned to each sensor pk;m,
along with a discretized denoising factor η. Formally, the
DQN agent action is described as at ¼ p1;m;

ÀÂ
p2;m…; pK;m;

ηϕÞ� and its dimensionality is K þ 1. As aforementioned, the
power values that are assigned to the wireless sensors depend
lie in Pkg. Similarly, the values selected by the agent for the
denoising factor η from Φ levels lie in setH¼ 0;f η1;…; ηΦg

(all possible actions are MK ×Φ). The selected action is then
implemented on the wireless environment and the state
space is updated at the next time step, since it encompasses
the updated power vector of all wireless sensors.

Reward function: The performed action at from a state st
results in a new state stþ1 and a positive or zero reward,
depending on whether this action was beneficial toward
the optimization goal. At a given time t the reward function
is defined as:

rt st−1; at−1ð Þ ¼ Ft−1 − Ft; If Ft<Ft−1

0; Otherwise

(
; ð9Þ

where the objective function F can be expressed by:

F ¼ ∑
k2K

ffiffiffiffiffiffiffiffi
pk;m

p
hkj jffiffiffi

η
p − 1

� �
2

þ σ2

η
: ð10Þ

Evidently, the reward function leads the DRL agent dur-
ing the training process to gradually favor a sequence of

Require: K;M;Φ; J; P̄k

Ensure: argminpk≥0; η>0F

Initialize a; γ, and ϵ¼ 1

Initialize a Replay Memory D

Initialize action-value function Q with random weights θ

Load 2J-level Channel Quantizer W ⋅ð Þ
for episode← 1;…;T do

Draw Channel Coefs hk
Assign Power Levels pk randomly

S0 ¼W pk bhk

��� ���2� �
, 8k ▹ Initial State Quantization

while rt>0 do

Select a random number Choice2 0;½ 1�
if Choice>ϵ then ▹ Exploration

Select a random action at
else ▹ Exploitation

at ← argmaxaQ∗ St;ð a θj Þ
end if

Take action at , Observe reward rt and state Stþ1

Store transition St ;ð at ; rt ; Stþ1Þ in D ▹ Experience
Replay

Select random minibatch of transitions St ;ð at ; rt ;
Stþ1Þ from D

Set yj ¼
rj; if Sjþ1terminal

rj þ γmaxa0 Q Sjþ1; a0
À Á

; otherwise

�
Perform Gradient Descent on yj − Q Sj; aj θj

À ÁÀ Á
2

St ← Stþ1

end while

ϵ← ϵ× T−2episode
T ▹ ϵ-greedy decaying

end for

ALGORITHM 1: AirComp-DRL Training for MSE Minimization.
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actions that minimize the F function and thus, also the MSE
in Equation (5).

Note that the training procedure is based on DRL prin-
ciples with experience replay [14]. The complete procedure
for training the AirComp-DRL model is summarized in
Algorithm 1. Following the initialization of the learning
hyperparameters (α and γ), a replay memory D (filled with
experience/transition tuples corresponding to random
actions), the two Q-function approximators (Q- and target
Q-neural networks with random weights) and the 2J-level
channel quantizer W ⋅ð Þ are also initialized. In each training
episode, the wireless environment is initialized before the
agent begins to perform actions by randomly selecting the
power levels pk to the sensors and the η value which consti-
tute the initial system state S0. Depending on the phase of the
training process, an action at is selected, that is, the power
levels of the sensors are randomly selected in the exploration
mode, whereas the power vector is estimated by the Q-
network during the exploitation mode of the algorithm. The
performed action leads the environment in a new system
state Stþ1 and a reward rt is returned to the DRL agent,
according to the objective of the reward function. The tran-
sition tuple St;ð at; rt ; Stþ1Þ is stored in the replay memory D,
while a minibatch of experience tuples is randomly selected
from D and, based on the Bellman equation, the Q-network
is used to estimate the quality of immediate and future
actions (in case that Sjþ1 is not a terminal system state).
Thereafter, the gradient descent method is utilized to update
the weights of the Q-network neurons (backpropagation),
using the target Q-network estimations as output labels
(every Nc steps of the algorithm, the weights of the Q-
network are inherited to the target Q-network neurons).
Finally, to gradually transit from exploration to exploitation,
an ϵ-greedy method with linear decaying is adopted. Note-
worthy, the DRL training efficiency is highly influenced by
the degree of exploration completeness, which in turn
depends on the state/action space dimensionality. A suffi-
cient number of training episodes T should ensure that the
agent visits as many as possible state/action pairs.

Regarding the inference procedure of a pretrained model,
the DRL agent performs actions only in exploitation mode
(ϵ¼ 0), while the storing of experience tuples in the replay
memory and the backpropagation processes are simply
omitted.

4. Simulation Results

In this section, numerical results are demonstrated both for
the DRL training phase and MSE comparison between dif-
ferent schemes. The presented simulations were conducted
in Python 3.8, whereas the libraries TensorFlow (version
2.3), Keras, and Scikit-Learn were used for constructing
and training the AI/ML models. Coding scripts ran on a
personal PC (CPU i7-8700; 3.2 GHz; RAM 8GB; no GPU
usage).

4.1. DRL Training. A QCSI-based AirComp system with 20
sensors is considered during the DRL hyperparameter stabi-
lization (see Figure 2). In addition, a time-varying channel

model, composed by a dominant pathloss component and a
Rayleigh fading component with variance σ2c ¼ 0:1 is
adopted for the rest of the simulations to represent dynamic
channel conditions. The channel quantizer W ⋅ð Þ is imple-
mented via a k-means clustering algorithm trained over
10,000 channel samples (where k represents the quantization
levels 2J ¼ 4). In this sense, time-varying QCSI values are
represented by the k-means centroids based on a minimum
Euclidean distance criterion. Without loss of generality, it is
assumed that the number of power and discrete FC scaling
factor levels involved in the DRL solution are M¼Φ¼ 10.
The values for sets Pk, 1≤ k≤K , and H are derived by
uniformly discretizing the continuous sets 0;ð Pmax� and 0;ð
ηmax�, respectively, where Pmax ¼ 1W and ηmax ¼ 1. The noise
variation at the receiver (FC) is set to σ2 ¼ 0:01. Upon testing
multiple NN setups, we concluded to a NN with three fully
connected hidden layers with sizes 3× , 2× , 1× MKð þΦÞ,
while the update frequency of the Q-target network is set to
Nc ¼ 100 steps. The activation function of all neurons
included in the hidden layers was the rectified linear (ReLU)
one, whereas the neurons of the output layer employed the
linear activation one.

Notably, the DRL reward convergence defines the extent
to which the resulted policy can significantly optimize the
objective function. Initially, two of the most critical hyper-
parameters involved in the DRL training process, namely the
learning rate α (monitors the update ratio between new and
previous Q-values) and discount factor γ (balances the
degree of which immediate or future-expected rewards are
preferred), were fine-tuned to ensure optimal reward conver-
gence. To that end, hyperparameter stabilization was
obtained by inspecting the training/learning curve for vary-
ing values α (see Figure 2) and γ (see Figure 3). As shown in
Figures 2 and 3, the reward time course gradually transits
from the exploration to the exploitation stage, reaching the
highest values for α¼ 0:0001 and γ¼ 0:9 (reward function
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FIGURE 2: Learning curves for different values of learning rate α as a
function of the training episodes.
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was relatively insensitive to γ parameters). Both parameters
were set to their optimal values for the rest of the
simulations.

4.2. Impact of Power Granularity. This section includes fur-
ther simulations related to the impact of the power granular-
ity (number of available power levels M that can be selected
by the DRL agent). In general, every MSE minimization
model in AirComp systems presents a total estimation error
(in MSE solutions) which is usual to the sum of four individ-
ual error terms: (i) channel quantization error (introduced
by the bit-based representation of CSI), (ii) power discretiza-
tion error (derived by the realistic and discrete power level
configuration of the sensors), (iii) eta discretization error
(scaling factor of data fusion takes practically discrete
values), and (iv) model fitting error (resulted by the model
itself in attempting to ensure a good trade-off between over-
and under-fitting, also called generalization error). Power
granularity comprises a crucial parameter for the DRL per-
formance and MSE optimization, since it defines the extent
to which the agent can precisely tune the transmitting power
of the sensors for a given power range. The target is to
investigate whether the increasing M actually improves the
DRL performance, given stable CSI quantization (here 4-
level quantization), number of sensors (K= 30) and power
range (here 0.1–1W). Variations in the CSI quantization
and/or power range do not result in loss of generality of
the conclusions.

In specific, the higher the number of power levels for a
specific available power range (e.g., from 0.1 to 1W), the
better the training performance. This is attributed to the
fact that the power granularity is increased with increasing
M, therefore making the action information (i.e., the outputs
of the DRL agent) to better approximate the perfect (selected
by the optimal solution) power level. Ideally, one could
expect that when the number of available power levels is

infinite (i.e., M →1), then MSE of DRL better approaches
the MSE of the optimal solution, given that the power level
suggestions are almost continuous values, and not discretized
levels. Noteworthy, the optimal solution outcome depends
drastically on the inputs of the DRL agents, which are the
QCSI values. Intuitively, when both perfect CSI and contin-
uous power levels are considered, then the DRL solution is
closer to the optimal one. However, in realistic conditions, as
the power granularity increases, the DRL becomes more
demanding in the DRL network dimensionality, given that
the number of the output layer neurons is increased with
power levels. Thus, there is an upper bound of the power
granularity, above which MSE starts to degrade due to the
concurrent increment of model dimensionality and com-
plexity. The higher the dimensionality of the output layer,
the more demanding the training phase due to the fact that
the number of available actions is increased (i.e., more
Q-values have to be estimated in the output neurons of the
DRL agent).

As shown in Figure 4, the MSE performance follows a U-
shaped form as a function of the number of power levels M.
This means that, for a given power range, number of sensors,
and quantization level, MSE is improved (i.e., lower MSE
values) until M reaches a threshold (here critical M = 20).
Beyond this critical value of M, MSE performance starts to
degrade (i.e., higher MSE values) because of the higher com-
plexity and dimensionality of the DRL model. Specifically,
complexity is proportional to the NN density, which is also
increased with the number of available power levels. We also
note that, as the number of available actions that can be
selected by the DRL agent is increased, NN dimensionality
should be increased to accurately estimate the large number
of available power configurations. This U-shaped function of
MSE versus M implies that the DRL performance in Air-
Comp MSE minimization comes with a power granularity
limitation, with the latter requiring no more than M = 20
power levels. In conclusion, power granularity has to be
thoroughly selected in MSE minimization problems, so as
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to ensure the minima of the U-shaped function between
MSE and M.

4.3. Comparative Results. For comparison purposes, the MSE
at the FC is computed for the proposed approach and com-
pared to the one of two baseline schemes: (i) the optimal
power allocation and FC denoising factor scheme using per-
fect CSI knowledge in Cao et al. [8] and (ii) the optimal
power and η allocation strategy computed in Cao et al. [8]
under QCSI knowledge.

The MSE can be calculated as F=K2 for the three afore-
mentioned schemes, taking into account the sensors’
assigned power levels and the assigned denoising factor
that emerge from each allocation framework. Toward this
direction, a comparison of the MSE computed at the FC
receiver for the three solutions is shown in Figure 5 for
J ¼ 1 and varying number of wireless sensors. It is observed
that, the DRL-assisted solution reaches lower MSE values
(∼10 dB) compared to the optimal solution under coarse
QCSI knowledge, regardless of the number of sensors that
participate in the AirComp system.

Similar results can be observed in Figure 6, where the
MSE value at the FC is compared amongst the three solu-
tions for J ¼ 2 with respect to the number of IoT sensors.
Notably, the MSE gap between the optimal solution with
perfect CSI and with QCSI knowledge is reduced due to the
increased number of quantization levels. Nevertheless, the
power vector and denoising factor allocation strategy pro-
vided by the DRL solution accomplish decreased MSE values
(∼3–4 dB) in contrast to the optimal QCSI solution.

As indicated from the results, the potency of the
deployed DRL framework on an AirComp system becomes
apparent in cases that quantization error significantly
degrades the AirComp MSE performance. To this end, the
communication overhead between the IoT sensors and the

FC can be effectively reduced (low number of transmitted
quantization bits), without significant degradation of the
MSE value and the overall performance of the AirComp
system.

4.4. DRL Versus Optimal Solution under Coarse CSI
Knowledge. The main drawback of the optimal solution is
that it requires perfect CSI knowledge, as well as it assumes
perfect precision in the power configuration. In realistic con-
ditions, the perfect CSI is not known and the precise power
level proposition requires a high number of bits to be trans-
mitted. The assumption of discrete power levels is adopted in
this work primarily to reduce the information required to be
exchanged by low-capacity and low-memory devices. Thus,
here we aimed to demonstrate the efficacy of applying DRL
under coarse QCSI knowledge.

Assuming that the optimal solution is inferred with the
QCSI values as input, the resulting solution deviates from the
perfect power allocation and MSE minimization, primarily
due to the quantization error introduced by the QCSI inputs.
These quantization errors cannot be corrected by the optimal
solution itself, since the latter is basically a closed-form
equation requiring only the perfect CSI values as inputs.
The reason for which DRL outperforms the optimal solution
inferred with QCSI as input may be attributed to the reward-
ing function that is used to train the agent. Specifically, the
rewards received by the agent (only during the training) take
into account the perfect CSI to better estimate the Q-values
of all power actions. Note that, the training is performed
offline with simulated data, whereas during the inference
phase, the agent is directly compared with the optimal
QCSI method using only the QCSI. The inference output
(i.e., power suggestions) is used to calculate the resulting
MSE, which was proven to outperform the optimal with
QCSI method.
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FIGURE 6: Comparison of MSE as a function of the number of
sensors between the DRL (red), and optimal schemes with perfect
(green) and quantized (blue) CSI. Four-level quantization is
considered.
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FIGURE 5: Comparison of MSE as a function of the number of
sensors between the DRL (red), and optimal schemes with perfect
(green) and quantized (blue) CSI. Two-level quantization is
considered.
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5. Conclusion

In this work, a wireless sensor AirComp system with QCSI
feedback and discrete power control levels is studied. To
mitigate the quantization error introduced in the AirComp’s
MSE calculation, a DRL-assisted framework for power level
and denoising factor selection is thoroughly described and
implemented, jointly exploiting quantized channel and power
information. The proposed DRL model is compared against
the analytical (optimal) MSE optimization solution, assuming
both perfect and QCSI knowledge and power level configura-
tion. Numerical results confirm the potency of the centrally
placed DRL agent in reducing the performance gap between
the optimal solution with versus without ideal CSI. Overall,
this study demonstrates the dominance of the DRL-assisted
solution under coarse QCSI conditions, highlighting the effec-
tive communication overhead reduction without considerable
degradation of the AirComp system’s performance.
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