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The Overhead Contact System (OCS) is critical infrastructure for train power supply in rail transit systems. OCS state monitoring
and fault detection are indispensable to guarantee the safety of railway operations. The existing human-based OCS state
monitoring and fault diagnosing method has some inherent drawbacks, such as poor real-time capability, low detecting
precision, and waste of human resources. Edge Intelligence (EI) can perform complex computing tasks offloaded from trains
within a little delay, and it is believed to help empower the OCS. In this paper, we propose an EI-based OCS state monitoring
and fault detecting system. The latest Computer Vision (CV) model YOLOv5s is used to detect the OCS faults using the
collected images. Edge Computing (EC) is used to perform the CV model inference. The EC system receives the OCS images
taken by the train cameras and calculates the real-time fault detection results. The consistency and scalability of running jobs
on edge devices are also addressed in our approach. Extensive experimental results demonstrate that the proposed EI-based
system can detect OCS faults in real-time. The adopted YOLOv5s achieves a high fault detection rate, outperforming other
models.

1. Introduction

During the train operation, the Overhead Contact System
(OCS) is applied to obtain power along the railway. How-
ever, OCS is mostly erected in the open air but lacks shield-
ing protection facilities that easily hung foreign objects,
which result in train delay or other safety accidents. There-
fore, it is desirable to take effectual maintenance measures
to identify OCS faults accordingly.

Concerning the development of OCS faults diagnosing,
existing solutions can be categorized into two types: artificial
cognition and image processing. At present, it mainly relies
on on-site manual inspection, which is of great workload
and low efficiency with long distribution, in bad weather or
other abnormal factors. Besides, manual vision is difficult
to capture imperceptible OCS elements, whereas it needs to
build an overhead shelf contact inspecting. Thus, it is natural
to shift the manual method to the Computer Vision (CV)
method.

The CV algorithm witnessed the rapid development of
deep learning, so a great deal of image processing is pro-
posed to identify objects, including but not limited to Faster
R-CNN built by Ren et al. [1], SVM (support vector
machines) raised by Cortes and Vapnik [2], and YOLO
(You Only Look Once) advanced by Redmon et al. [3].
There are kinds of research on fault diagnosis by object
detecting, but the latest CV model YOLOv5s (small) is
adopted in this paper to detect OCS faults, with high detec-
tion accuracy and fast speed (up to 140 frames per second).
In the past few years, the remarkable advancement of emerg-
ing technologies in low-cost cameras able to acquire high-
definition images has become an infrastructure to tackle
these problems. In view of the convenience of image acqui-
sition, it is feasible to use target detection for fault diagnosis.

Recent developments in the field of Edge Intelligence
(EI) have led to increasing interest in researchers from both
academia and industry, e.g., International Electrotechnical
Commission described EI as a process when the data is
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acquired, stored, and processed with machine learning at the
network edge [4]. However, traditional cloud computing
depends on network latency and limited throughput.
Besides, the comes and goes of data transmission affect the
safety of railway. Recent evidence suggests that Edge Com-
puting (EC) can perform complex computing tasks off-
loaded from trains within a little delay and achieve the
OCS detection with full railroad coverage but not upload
to the cloud center. To implement the real-time monitoring
OCS, we propose a solution to deploy OCS to EI with this
inspiration.

In this paper, the adopted EC system is used to perform
the CV model inference, capturing the OCS images taken by
surveillance devices outside the train and YOLOv5s algo-
rithm calculating the fault detection results in real time.
The main contributions of this work are as follows:

(i) We deploy a consistent, easy-to-deploy, and low-
cost EI platform for OCS fault diagnosis. It greatly
helps to minimize the computational time and effort
for sending the collected data from cameras to
remote cloud servers

(ii) We propose a novel dataset composed of substantial
amounts of high-definition images. It contains
labeled corresponding OCS information, gathered
from the real rail transit. To the best of our knowl-
edge, it is the first to contain 9 frequently faulty OCS
components, as seen in Figure 1

(iii) We design a CV-based real-time monitoring system
using YOLOv5s for OCS recognition. YOLOv5s
makes it possible to capture the essential details
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Figure 1: Nine features of OCS (0: Guanmao; 1: Xuanzhuanshuanger; 2: Chenglisuozuo; 3: Dingweixianja; 4: Dingweizhizuo; 5: Ubaogu; 6:
Jueyuanzi; 7: Wanbidizuo 8: Diaoxuan).
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Figure 2: The OCS structure with three functional layers.

Table 1: The main assignment of the three components.

Component
names

Component action

Cloud layer CloudCore
Send events and commands of the cloud to the edge and receive status and event reported by the edge

terminal.

Edge layer EdgeCore
Receive events and instructions issued by the cloud, execute them, and report the status and event at

the edge to the cloud.

Container
operation

Docker Currently, KubeEdge supports Docker by default.
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for OCS faults, and the precision outperforms the
existing work

The rest of the paper is organized as follows. In Section
2, we review the related work. Section 3 introduces the
implementation of EC and the real-time OCS monitoring
system. The proposed OCS dataset and the CV-based
YOLOv5 for OCS detection are described in Section 4.
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Figure 3: Logical structure for EC: cloud and edge collaboration; edge and end collaboration; cloud, edge, and end collaboration.

Figure 4: Real-time monitoring identification using webcam.

Figure 5: Object detection results in OCS images.

Require: Images, videos, or live video in camera detection
Ensure: The detected OCS components and the total time
1: def model_load: Model initialization
2: def initUI(self): Interface initialization
3: ifsource == } f ileName}then
4: Upload the image and then test it
5: else
6: resize scale = self :output size/im0:shape½0�
7: Save inf erence images
8: end if
9: whilepath, im, im0s, vid cap, sindatasetdo
10: iflenðim:shapeÞ == 3then
11: expand for batch dim
12: Second stage classif ierðoptionalÞ
13: else ifRescale boxes f rom img size to im0 sizethen
14: print string and normalization gain
15: Print andwrite results
16: end if
17: end while
18: def closeEvent(self, event): Interf ace closing events
19: def close_vid(self): Video Reset Event
20: Set tmp file to put the intermediate processing results
21: sys.exit(app.exec())

Algorithm 1: Real-time monitoring interface.
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Experiments and results are reported in Section 5. In Section
6, we conclude the paper.

2. Related Work

Generally, OCS images are obtained by 4C acquisition
devices installed on the top of inspection vehicles, as shown
in Figure 1. It's said that more than 30 cameras are installed
on the train roofs. Each time a pole is passed, it triggers front
and rear support devices. Each camera shoots a different
OCS position along the railway line.

With emerging high-definition cameras and CV algo-
rithms, image progressing becomes one of the most crucial
instruments to realize automatic OCS fault diagnosis. Cheng
proposed an improved Faster R-CNN into the abnormal
diagnosis among 5 features, which proved the validity of
the model in rail transit [5]. The well-modified model can
show good performance, but cannot be fully employed in
OCS-specific scenarios and needs further improvement.
And the clevis was precisely located based on the same
model, and missing fault detection of split pins was achieved
by multiple linear SVM classifiers [6]. In [7], the researchers
used YOLOv3 to classify the pantograph faults, with the
training of 20000 images and 3 high-definition videos cap-
tured by noncontact cameras. A detection model using
YOLOv3 is also created in [8] to detect the insulator faults.
As we can see, the feature extraction in previous research
is usually manually controlled, which is difficult for models
to obtain satisfactory robustness. The focus of such studies
remains narrow, dealing only with a certain component or
a class in OCS, which have great limitations. Different with
above all, the adopted CV algorithm can not only track the
target accurately and ensure real-time performance, but also
identify nine OCS components at the same time [9].

EC has been envisioned as a likely emerging distributed
computing paradigm, which intends to transfer the comput-
ing effort from far-end cloud servers to the network edge, to
satisfy the requirements of real-time OCS detection and
location-aware data processing [10]. The EC system receives
OCS images captured by train cameras and calculates real-
time fault detection results, which are then compared with
the sample images through a series of processing of the fea-
ture quantities in the edge device [11]. EC is very suitable for
applications in ultrareliable and low-latency communication

Figure 8: Adopt DIOU_nms to filter BBoxes.
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Figure 6: The Detailed Structure of The YOLOv5s for OCS.

Figure 7: Adopt IOU_nms to filter BBoxes.

Table 2: The statistics of handcrafted dataset.

Images Labels

Training 894 894

Validation 281 281

Testing 200 \
Total 1375 1175

Figure 9: The raw data samples.
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scenarios in smart railways [12]. More and more intelligent
railway operations require instant processing, transmission,
and computation of big data. With a long distributed dis-
tance, a wide range, and a real-time performance to recog-
nize and process a particularly large number of images, it
is desirable to identify the OCS faults and build EI
architectures.

3. The EI-Based OCS Fault Detection

In this section, we construct a detailed introduction to our
edge-based OCS faults checks from a system perspective.
Our system consists of three functional layers, surveillance
layer, edge layer, and cloud layer (Figure 2). This working
pattern is illustrated as follows. First, the cameras collect

the desired data from the 4C cameras deployed on the
inspection vehicle or mounted along the railway with a pan-
oramic view. Second, once the data is gathered, the built
YOLOv5s model will load from the trackside edge servers,
and instantly preprocess, to realize real-time automatic
inspection. The cloud is used to store images and analyze
results [13]. This technique removes redundant information
of data so that some or all data analysis can be migrated to
the edge. Thereby, it can reduce the calculation, storage,
and network bandwidth requirements of the cloud center
and improve the speed and efficiency of data analysis. Using
available surveillance in OCS, we mainly focus on the inter-
action between the endpoints and the cloud servers.

3.1. The Cloud Layer. In this work, we formulate two nodes
to the deployment of the EC system, i.e., choose Kubernetes
(K8S) for the cloud component and KubeEdge for the edge

Table 3: Deploy EC system host configuration.

Cloud node EC node

Operation system Ubuntu 21.04 64-bit Ubuntu 21.04 64-bit

IP 172.20.0.3 172.20.0.1

CPU/RAM 2vCPU\8GiB 4vCPU\16GiB
Disk 60GiB 20GiB

Workload K8S, Docker, CloudCore Docker, EdgeCore

Version K8S v1.16.2 KubeEdge v1.22
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Figure 10: The labels of handcrafted dataset.

Table 4: Confusion matrix.

Actual positive
class

Actual negative
class

Predicted positive class tp (true positive) fn (false negative)

Predicted negative
class

fp (false positive) tn (true negative)
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component, each of which runs as illustrated in Table 1.
Users can arrange pods with KubeEdge, manage devices,
and monitor pods and device status on edge nodes just as
they are in a traditional K8S cluster. There are two main
things to perform in the cloud layer. One task is to manage
K8S nodes, and the other is to train CNN models. K8S runs
containers as pods when going through Docker containers.
The logical architecture highlights the interaction and col-
laboration among the cloud, edge, and end parts of the EC
system, as seen in Figure 3. K8S control node follows the
original data model in the cloud to keep the original control
and data flow unchanged. K8S can manage nodes running
on KubeEdge just like normal nodes. Moreover, the reason
why KubeEdge can run on edge nodes with limited resources
and uncontrollable network quality is that it realizes the
sinking of the orchestration and containerization of the
cloud APPs through CloudCore and EdgeCore based on
the K8S control nodes [14]. The CloudCore is responsible
for monitoring the instructions and events of the Kubernetes
control node and sending them to the EdgeCore. At the
same time, it submits the status information reported by
the EdgeCore to the control node in Kubernetes. The Edge-
Core is responsible for receiving the commands and event
information from the CloudCore in the cloud part and exe-
cuting the Kubernetes orchestration containerized
application.

3.2. The Edge Layer. KubeEdge is an open platform built on
Kubernetes, which can extend the ability of K8S to orches-
trate containerized APPs to edge nodes and provide basic
support for network, APPs deployment, and data synchroni-
zation between cloud and edge. The data, composed of
images or videos, is sent to the edge layer for further process-
ing. The images are usually subjected to preprocessing such
as classification and prediction using bounding box (BBox)
and confidence score. After the images features are

extracted, the processing results are sent to the cloud layer,
and the cloud collaboratively manages the edge together
and stores the data sent from the edge layer. Same as K8S,
KubeEdge is also deployed by containers. The implemented
KubeEdge nodes management module employs various load
balancing strategies to perform the dynamic job allocation
and achieve better resource utilization.

To cope with a large number of inputs and the convolu-
tional neural network (CNN) parameters, Pytorch jobs are
put in different containers for detecting, as shown in
Figure 3, which is called data parallelism. The data parallel-
ism to train CNN in parallel is to replicate data on each
device and run each training step simultaneously on all rep-
licas, each time using a different batch of data. Then the gra-
dients computed by each replica are averaged, and the
results are used to update the model parameters. Namely,
it refers to distributing the data across multiple cores. To
make Pytorch jobs operation smoothly on the Kubernetes
(K8S) nodes, one of the most important parts is how to
run computationally complex tasks with relatively limited
resources. It needs a huge space for the storage of collected
OCS images, in order to fully load the CNN model and all
data samples into the local memory. PyTorch provides sim-
ple functions that enable easy but efficient parallel GPU
computing with only a few lines of codes: nn.parallel.data_
parallel(module,inputs,device_ids=None, dim=0,output_
device=None,module_kwargs=None) torch.nn.DataParallel(-
module,device_ids=None,dim=0, output_device=None)

We complete the visual interface and integrate it to the
edge side, which is designed by Pyqt5. We have three func-
tions: image recognition, video identification, and real-time
monitoring identification, in Figures 4 and 5. In the black
box, image recognition function identifies 7 parts in 1.7 s,
and the video detection function identifies 15 parts in 1.6 s.
With the model well trained, we obtain such good results
in the interface, to facilitate client monitoring. The functions
are shown as in Algorithm 1.

4. The YOLOv5-Based OCS Fault Detect Model

Researchers choose to use image types for analysis, inter-
preted through physical probability models, and finally, a
CV algorithm is formed, which has proved that CV is effec-
tive and efficient for processing images [15]. In this section,
our approach is presented in detail. In order to explore the
attributes of the proposed dataset, we adopt a CV algorithm
based on YOLOv5 deployed in the edge servers, as shown in
Figure 6. The feature information of the inputs is extracted
by CNN, and the image is divided into N ×N grids. And
the model was deployed in the edge layer. When the center
of an object falls on a grid, the grid is responsible for predict-
ing what it is. In the field of object detection, YOLOv5, a typ-
ical algorithm in deep learning, includes three components:
backbone, neck, and head parts. The deeper network, the
deeper backbone, the more complicated calculation will be.
In this paper, YOLOv5s is selected with the minimum pre-
training network structure and speed while meeting the
accuracy requirements [16].

Figure 11: Detecting results.
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Backbone is a CNN that aggregates different images at a
fine granularity to form image features. Neck is a series of
network layers for blending and combining image features
and passes them to the prediction layer. The head part head
makes predictions on image features, generates bounding
boxes (BBoxes), and predicts categories. In this work, an
OCS classification model based on YOLOv5 object detection
network named OCS-YOLOv5 is designed.

For data augmentation in OCS images, we enabled
mosaic enhancement and used random crops with 4 images
between 0.25 ∗ img_size, 0.75 ∗ img_size pixels, scale factor
between 0.9 and 1, and shear between 1 and 10, image trans-
lation (± fraction) between 0.9 and 1, image perspective (±
fraction), range 0-0.001, image flip up − down ðprobabilityÞ
= 1:0, image flip left-right (probability) between 0 and 1.0,
and imagemixup ðprobabilityÞ = 1:0. Note that these param-
eter values were determined based on experiments per-
formed on the validation set. We used Mosaic [17], which
is a well-known Python library for image augmentation, to
apply these transformations: stretching image to modify size,
using gamma transform, randomly select the contrast and
brightness of the images, adaptive histogram equalization
for the contrast-constrained case, motion blur algorithm to
legend images, median filtering, normalizing, and so on.

The new images are scaled and stitched to form new
images with rich backgrounds and different shapes from
the original OCS. Therefore, the transformation makes the
OCS dataset more diverse, increases the robustness of the
model, makes the model more generalizable, and finally
enables the OCS system to cope with more complex real-
world situations.

In the postprocessing process of target detection, the
screening of many target boxes usually requires non-
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Figure 12: The confusion matrix for OCS classification.

Table 5: The results of 9 elements based on YOLOv5s.

Class Labels P R mAP@.5 @.5:.95

All 1317 92.6% 93.7% 94.5% 0.548

Guanmao 200 96% 95.3% 95.4% 0.513

Xuanzhuanshuanger 289 91.8% 94.8% 95% 0.463

Chenglisuozuo 97 94.9% 95.7% 97.4% 0.646

Dingweixianja 147 95.5% 95.9% 94.4% 0.409

Dingweizhizuo 97 97% 96.9% 98.5% 0.7

Ubaogu 58 97.5% 96.6% 97.2% 0.669

Jueyuanzi 185 87.9% 91.9% 93% 0.751

Wanbidizuo 163 82.6% 87.1% 87.2% 0.308

Diaoxuan 81 90% 88.9% 92% 0.472
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maxima suppression (NMS) operation, which is used to fil-
ter those BBoxes that heavily predict the same object, and
keep only candidate BBoxes with high response. In the pro-
ject, DIOU_nms is also adopted to modify the IOU in nms
to DIOU_nms under the same parameters. For some occlu-
sion overlapping targets, there are indeed some improve-
ments. As seen in Figures 7 and 8, although the effects are
similar in most states, it is fine to have a slight improvement
without increasing the computational cost.

The OCS fault detection based on YOLOv5s proposed in
this paper mainly includes two parts: target tracking and tar-
get detection. Target tracking completes the tracking and
detection of nine components. When the tracking target is
lost, the target detection will complete the retrieval of the
target by detecting the current frame.

5. Experiments

In this section, the conducted experiments and results are
presented, comparing YOLOv5 CNNs. Our experiment
includes edge nodes and a cloud server. K8S v1.16.2 is used
to the cloud layer; KubeEdge v1.22 and Docker v20.10 are
applied to manage the edge; and Pytorch v1.10 is utilized
at both the training and inference phase of the CNN model.

5.1. The Handcrafted Dataset. In our testbed, we provide a
handcrafted label for each image by using labeling, corre-
sponding to a distinct OCS image. The dataset has some vol-
unteers from Qingyang Railway capturing images, and each

of them performs at a different time, so we need to further
handle images due to the vehicle motion, scene illumination
changes, image noise, etc. First, the total labeled data were
split into a training set (75% included), a validation set
(the other 25%), and extra 200 images for testing as detailed
in Table 2. Second, the data are not quite adequate to train a
full-fledged CNN model. To address this issue, we adopted a
repetition strategy, which is widely used for model training
on scarce data samples [18]. We repeated the training set
300 epochs, each time randomly selecting 50 samples as
input. Repeated training could effectively solve this problem,
while batch training could improve the convergence speed
and memory usage. Third, we grayscaled and normalized
the images, described by a quantized grey level, without
color information, as seen in Figure 9. Figure 10 shows the
normalized dataset through statistics, which can visualize
the dataset and get some useful information, (e.g., (a) shows
the instances of label statistics, (b), (c), and (d) can see the
spatial distribution of targets in the annotation file).

5.2. Experimental Setup. Table 3 shows the details of the two
hosts for deploying the EC system. The YOLOv5s CNN
model was trained using the Pytorch framework, and our
experiments were performed using Python 3.8, OpenCV
4.1, logging with TensorBoard 2.4, plotting with seaborn
0.11, plus with pycocotools 2.0, etc. Note that all networks
were trained using the optimizer with epochs = 300, batch
size = 16, and img size = 640 × 640.
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5.3. Evaluation Metrics. For multiple categorization prob-
lems, the discrimination evaluation of the best solution dur-
ing the classification training can be defined based on the
confusion matrix as in Table 4. The table row represents
the predicted class, while the column represents the actual
class. The quantitative criteria we used to assess the perfor-
mance are P (Precision) and R (Recall), as defined.

P = tp
tp + f p

,

R = tp
tp + f n

:

ð1Þ

P and R are following performance criteria that are fre-
quently in conflict. The smaller the R, the better the P.
Therefore, we consider the F-score ∈½0, 1�, which represents
the harmonic mean of P and R, as shown

F = 2
1/P + 1/R : ð2Þ

The area enclosed by the PR_curve is AP, and mAP
(mean average precision) is the average AP of all categories
to measure the average quality, defined as Equation (3); Q
means the total numbers. The measurements of OCS multi-
ple targets detecting are mAP@0.5 and mAP@0.5 : 0.95.
mAP@0.5 is the average precision when IoU is 0.5.
mAP@0.5 : 0.95 has a lower precision level than mAP@0.5
because the prediction threshold is increased by 0.05 from
0.5 to 0.95 at different IoU thresholds.

mAP =
∑Q

q=1AP qð Þ
Q

: ð3Þ

5.4. Results. It is found that after training, the model can not
only detect the marked elements but also predict more unla-
beled but available ones. The detection screen of the algo-
rithm proposed in this paper for OCS is shown in
Figure 11. In the complex background of various wire cross-
ings, the algorithm can accurately identify the nine compo-
nents of OCS.

Figure 12 is OCS confusion_matrix of the predicted
results. This matrix makes it easy to see if the machine is
confusing different classes. The matrix indicates the preci-
sion of 9 features, e.g., the precision of guanmao is 96%,

and 4% of guanmao in images is a false negative, same as
others. According to the evaluation metrics, the results of
the 9 elements in target detection on the test set are as
Table 5.

The more PR_curve is to the upper right, the better the
overall performance of the model. As can be analyzed in
Figure 13(a), the P rate of positioning supporters is above
98.5%, and the average (mAP@0.5) is up to 94.5%. We can
compare the area size under the curve, but the balance point
F1 is more commonly used. When P = R (red slope), the
larger the F1 value, the better the performance.
Figure 13(b) calculates F1 scores for each category to distin-
guish them and finally get the arithmetic mean of F1 with all
classes 0.93 at 0.412.

The results displayed are shown in Figure 14 in the form
of prediction boxes, confidence values, and object classes.
From the training results, it can be seen that the level of min-
imized return is achieved when the graphs start to form
elbows in about 60 epochs at P, R, mAP@0.5, and
mAP@0.5 : 0.95. (a) YOLOv5s uses GIoU as the loss of bbox.
The box is the mean value of GIoU loss function. The more
precision accurate, the smaller the box. As the training
epochs increase, the box gradually drops below 0.02, the
more epochs, the less decreasing trend. (b) Objectness is
the average target detection loss, the smaller the target detec-
tion, the more accurate it is. When training to 300 times, the
loss is reduced to less than 1.5%. (c) Classification is the
mean of classification loss, there is essentially no difference
while training to 100 epochs. (d) The highest score for P is
97.7% at 60 epochs. After that, the change is very small in
the range of 0.05. (e) The highest value for R is 94.3% at
43 epochs. Thus, training for more than 45 epochs has expe-
rienced diminishing returns. BBox loss, target detection loss
means, and Classification loss means of the validation set are
as shown in (f) val BOX, (g) val Objectness, and (h)val clas-
sification. (i) The OCS on mAP@0.5 has a high level of pre-
cision, which is up to 93.5% in 60 epochs. (j) The highest
value of mAP@0.5 : 0.95 reaches 0.573 and then tends to
decline and stabilize at a range of 0.567. The mAP value
indicates the average precision value is far above the thresh-
old of 0.7 so that the resulting model is feasible to use.

Using the CNN model in this paper to compare with
YOLOv5s, YOLOv5m, YOLOv5l, respectively, listed in
Table 6, our YOLOv5s model achieved high accuracy, nearly
95%, and outperformed all other models and settings. We
also tested our model on the EI system designed in Section
3 for the real-time monitoring OCS. Note that the same
OCS dataset and epochs were used in the same EI testbed.

6. Conclusions

In this paper, we proposed an EI-based architecture for OCS
fault detection by using a CV-based YOLOv5 algorithm, in
order to detect the status of the OCS in the running of the
train and perform real-time tracking detection of surveil-
lance videos or images. Our design includes the surveillance
layer, the edge layer, and the cloud layer. In the implementa-
tion, we used two Ubuntu operating systems simulating the
edge layer and the cloud layer and K8S to manage nodes

Table 6: Comparison of results of the three algorithms.

YOLOv5s YOLOv5m YOLOv5l

Model size 28MB 84MB 346MB

mAP@0.5 95% 92% 91%

300 epochs
TrainingTime

11.220 h 14.590 h 14.990 h

291 images
DetectTime

154.825 s 149.068 s 153.242 s

The resulting
WeightModel

14.4MB 42.5MB 93.8MB

10 Wireless Communications and Mobile Computing



running on KubeEdge. We also evaluated three structures of
YOLOv5 to find a trade-off between efficiency and perfor-
mance. Extensive tests indicate that our YOLOv5s model
built on EI achieves obvious advantages in speed and reliable
accuracy, which can guarantee real-time detection of OCS
equipment. In the future, we would like to incorporate more
OCS elements to detect. Besides, we can further study the
performance of our design with OCS Geometric forms.
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