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In this paper, we model the causes of power-related network outages in Ghana using discrete-time Markov chains. We used data
consisting of 2,756 small-scale carrier telecommunications outages occurring in Ghana, with accompanying root causes over a
period of 5 years and 8months, from August 2015 to April 2021. The results indicate that the majority (n= 1,404) of the network
outages were caused by the generators while the least number (18) of outages were caused by a communication equipment.
However, longer network outages were caused by fuel issues with an average outage time of 1,027.82min over the study period. The
transition probability matrix obtained from the data revealed that regardless of the present cause of the network outage, the
probability that the next network outage will be caused by the generators is higher than the probability that the outage will be
attributable to any other cause. The steady-state distribution indicates that in the long run (n≥ 16), 51% of the network outages will
be caused by the “Generators” while 10.8% of the network outages will be caused by the “Batteries.”We also checked and simulated
the probabilities of a network outage caused by any of the 12 possible root causes for 12 steps. It seemed apparent from the
simulations that generators are the most likely cause of network outages from Step 1 up to Step 7, irrespective of what the initial
cause of the network outage is. With these findings, players in the telecommunications industry can clearly plan better to reduce
future network outages.

1. Introduction

To meet the expectations of mobile network subscribers,
network reliability must be ensured as the need for telecom-
munication data traffic has increased tremendously in recent
years. The deployment of cutting-edge technology like 5G
and its applications, including the internet of things (IoT),
machine-to-machine (M2M), and device-to-device (D2D),
are crucial services that cannot experience any outage [1].
Circuit capacity leasing is necessary and must always be
dependable for banking, internet service providers (ISP),
governmental organizations, and broadband services [2].
The two types of network outages are failures of the commu-
nication equipment (Active) and failures of the passive sys-
tem. Nine-five (95) percent of all outages originate from base
transceiver stations (BTS), which can have a problem with
either passive or active communication equipment [3].

Rectifiers, batteries, and failed direct current (DC) fuses
or circuit breakers are a few examples of passive issues [4].
Other examples include generators, AC circuit breakers,
commercial air conditioning, an AC transfer switch, alarm
systems, and environmental systems.

Microwave radio issues, fiber cuts, blocked time slots,
radio indoor interface issues, and signaling issues are further
communication equipment failures. These errors can affect
one or more cell sites, causing substantial outages that have a
big impact on subscribers. The mobile network operators’
(MNOs) need for passive infrastructure operations andmain-
tenance is increased as a result. Tower companies (TCs) must
take care to put the proper procedures in place to monitor the
health of the passive telecommunication element and the
capacity to provide network services continuously. In today’s
highly competitive corporate world, it is essential to execute
operations with little to no outages. In the telecom industry,
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harsh penalties are enforced for subpar quality of service. The
service level agreement (SLA) determines the cost of outages
to the passive maintenance contractor [5].

MNOs and TCs must be interested in the root causes of
network outages if they are to increase network availability, quality
of service (QoS), and customer satisfaction. This will also help
MNOs to avoid sanctions by regulatory bodies such as the
national communication authority (NCA), in the case of Ghana.

In 2018, the NCA sanctioned several telecommunication
companies in Ghana for failing to meet the standards gov-
erning coverage, data, voice, and speech quality due to net-
work outages. MTN-Ghana, AirtelTigo-Ghana, Vodafone-
Ghana, and Glo-Ghana were asked to pay a penalty of
GHC1.8million, GHC11.6million, GHC8.9million, and
GHC4.5million, respectively, by the NCA [6].

Network outages will result in revenue loss and poor QoS
in the telecommunication industry, especially in 5G deploy-
ment. It was estimated that the cost of an outage on poor
QoS due to power quality on the mobile networks and TCs
could be as high as 12% of their annual turnover. In the event
of power failure, the network equipment relies on lead-acid
or lithium-ion batteries for their energy source to eliminate
call drops, reduce mean time to repair, and increase service
quality and revenue [5].

In a study by Tollar and Bennett [7], a network outage
impact measure was taken into consideration to properly
reflect the significance of large and major outages on the
modern telecommunications network. A system was created
to evaluate the severity of individual outages and the net-
work’s performance over a specified time frame [7].

A study by Rauf et al. [8] proposed three different frame-
works (configurations) to minimize network outages, opera-
tional costs, and environmental pollution and to improve
network reliability and profitability. These three configura-
tions are as follows: (1) utility grid and backup battery; (2)
utility grid, backup battery, and diesel generator; and (3)
utility grid, backup battery, and solar. After putting the fra-
meworks through a linear optimization process, the results
indicate that configuration (2) has the potential to give the
highest level of dependability among all configurations [8].

It is important that the processes for service disruption or
network outage be understood, the risk evaluated, and prac-
tical improvement programs outlined. Since telecommunica-
tions systems are complicated, dispersed entities that provide
essential services to society, it is critical that these things be
understood [9].

The Network Reliability Steering Committee (NRSC)
was established with the assistance of an industry association
for the purpose of analyzing reports concerning facility
outages, local switch outages, common channel signaling
outages, tandem switch outages, digital cross-connect system
(DCS) outages, and the central office outage. Also, the NRSC
examines outages regarding the length of the outage, the
number of consumers affected, the number of blocked calls,
and the frequency of outages [4, 10, 11].

In 1993, the NRSC carried out technical research on reli-
ability and recommended that the industry conduct further
research to better understand the proposed recommendation

and devise industry-wide best practices for the method of
implementation to cut down on the number of times that
outages occurred [12].

The Nippon Telegraph and Telephone (NTT) created a
technology to predict the impact of network failure, specify
network reliability in terms of the effects on the user, and
construct a network per the reliability specification to achieve
high reliability in a telecommunications network [13].

A study by Luis and Moncayo [14] presents a model for
the planned outage for the telecommunication industry to
maintain the uptime standard of 99.999% or 5.25min of
outage per year. The model will make the planning of outage
easier and better understand how to minimize the planned
outage to improve network availability and QoS [14].

In a study by Raman and Chebrolu [15] discovered that
the primary reason for communication network failure in
rural India was the poor quality of the power supply. Accord-
ing to the investigation findings, 93 out of 95 faults resulted
from power interruptions [15].

An efficient and dependable telecommunications solu-
tion that combines renewable and “conventional” energy
sources to reduce outages is a hybrid system [16]. This
includes solar batteries, generator batteries, commercial AC
electricity, and batteries that combine solar, battery, and
generator power [17].

An effective, efficient, and lifesaving backup batteries,
when the generator on the cell sites breakdowns, automati-
cally supplies DC power to the communication equipment
until the problem is fixed [8, 18].

Wind and solar energy were offered as alternative power
sources to achieve a dependable power supply in the Tanza-
nian telecommunications sector to reduce power outages,
improve network dependability, and increase profitability
[17]. The report also recommended adding a network power
management system to the telecommunication network sys-
tem to increase network service availability and reduce oper-
ational costs resulting from broken network components [17].

Alternating current (AC) is usually converted to DC with
the help of rectifier modules with an output of 24–27 or
48–57-volt DC. The DC power charges the batteries while
supplies DC power to the equipment on the cell sites [11].

A study by Samuels et al. [5] revealed that the cause of
outage in telecommunication is due to the failure of the
generator to serve as a backup due to the seized piston, over-
heating of the engine, AC alternator fault, fuel pump, and
injection pump. The study also stated that backup batteries
deployed on the telecommunications networks could supply
power for at least 8 hr in case of generator fault [5].

In a different study by Spragins et al. [19], the duration of
failures and single-line availabilities’probability distribution func-
tions are provided. Along with computer simulation data con-
firming the model’s correctness, a heuristic approach for
calculating availabilities for more complicated systems is offered.
The findings allow for more accurate availability forecasts than
could previously be computed for typical forms of the net-
work [19].

Modeling of telecommunication network outage was
performed by Oduro-Gyimah et al. [20] using the
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autoregressive integrated moving average (ARIMA) model.
The outcome of the investigation showed that the ARIMA
(2,0,2) model was the best among all five models explored
for predicting telecommunication outage duration. The best
model was selected using the root-mean-square error, mean
absolute error, and mean absolute percentage error [20].

Statistical models were used in a study by Chayanam [11]
to assess power outages in the power sector, including a
frequency distribution, which was used to determine the total
number of customers affected by the outage and was calcu-
lated using the Best fit software [11].

To statistically determine whether a trend exists in a set
of time series data, an outage dataset was put through a
Laplace trend test [21]. To explore periodicity in the power
outage data, the study used Fourier analysis to reveal that no
discernible spike could be seen. Thus, it can be concluded
that the outage data exhibits either very little or no seasonal-
ity or regularity [21].

To assess the reliability relationship of outage data and
identify the explanatory variables for the outage data, Pois-
son regression and Mac ANOVA (Macintosh Analysis of
Variance) were utilized [22].

In a study by Snow and Weiss [23], the sudden changes
in power outages were examined using a piecewise linear
model. The model segmented the data into intervals by a
presumed statistically significant breakpoint identified by
the Poisson regression [23].

The power lawmodel, often known as theWeibull reliability
growth model, was used by Steven [24] on an outage data to
determine whether the system is worsening or improving. The
study demonstrates that when the scale parameter (β) is greater
than 1, the intensity function increases, indicating that failures
tend to occur more frequently. Conversely, when the intensity
function is 1, the system will perform better [24].

In a study by Iddrisu and Gedel [25], discrete-time Markov
chains (DTMCs) were used to model the downtime severity of
telecommunication networks in Ghana. Their results indicate
that the majority (n=905) of the daily network downtime
recorded was negligible while only 25 of the outages were severe.
The transition probability matrix revealed that when the present
network downtime severity is negligible, then there is an 81%
chance that the next network downtime severity will still be
negligible, a 12% chance that the next network downtime sever-
ity will beminimal, a 4% chance that the next network downtime
severity will be significant, 2% chance that the next network
downtime severity will be serious, and 1% chance that the next
network downtime will be severe.

Although a lot has been written about telecommunica-
tion network outages, only a few studies have concentrated
on the causes of telecommunication network outages. Fur-
thermore, the few studies that focused on the causes of net-
work outages only considered a few causes mainly on the
active side. This study, therefore, contributes to the literature
on telecommunication network outages by employing
DTMCs to model the causes of all power-related telecommu-
nication network outages in Ghana. The advantages of using
DTMCs over other statistical models are simplicity and out-
of-sample forecasting accuracy.

2. Methodology

In this section, we provide a description of the data used for
the study and the statistical model used for data analysis.

2.1. Data. The data used in this empirical study were
obtained from the National Communication Authority of
Ghana, and it consists of 2,756 small-scale carrier telecom-
munications outages occurring in Ghana, with accompa-
nying root causes over a period of 5 years and 8months,
from August 2015 to April 2021.

The data contain the incident start time, escalated time,
battery time, and outage time. In addition, the data contain
the number of affected cells, the number of physical and
logical sites that are affected, and the root cause of the outage.
The data are extracted from the records of the network-
monitoring center of the various MNOs and tower compa-
nies in Ghana.

2.2. Discrete-Time Markov Chain Model. Markov chains are
stochastic models used mainly for the analysis of stochastic
processes [26]. There are basically two types of Markov
chains: continuous-time and DTMCs. The choice of either
continuous-time or DTMC largely depends on the nature of
the time series data involved. The DTMC is used in this
application since the data consists of discrete causes of net-
work outages in Ghana.

Mathematically, a DTMC is defined as a sequence of
random variables X1;X2;…, which is characterized by the
Markov property. The Markov property, also known as the
memoryless property states that the distribution of the next
variable (Xnþ1) depends only on the value of the current
variable (Xn) and not any of the previous variables (Xn−1;
Xn−2;…;X1). This definition is presented in Equation (1) as
follows:

P Xnþ1 ¼ xnþ1∣X1 ¼ x1;X2 ¼ x2;⋯;Xn ¼ xnð Þ
¼ P Xnþ1 ¼ xnþ1∣Xn ¼ xnð Þ: ð1Þ

The state space of the Markov chain is the set of all
possible states S¼fs1; s2;…; srg of Xn, which can be finite
or countably infinite. In this study, the state space consists of
the possible power-related causes of network outages identi-
fied in Ghana (Equation (2)):

S¼ AC circuit breakers; AC transfer switch; batteries;f
commercial AC; communication equip:; DC fuse=CB;
environmental systems; fuel issues; generators;
hybrid failure; rectifiers; temperatureg:

ð2Þ

The Markov chain transitions from one state (say si) to
another state (say sj) with probability pij in one step, known
as the transition probability (Equation (3)):
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pij ¼ P X1 ¼ sj∣X0 ¼ si
� �

: ð3Þ

The probability of transitioning from state i to j in n steps
is shown in Equation (4) as follows:

p nð Þ
i j ¼ P Xn ¼ sj∣X0 ¼ si

� �
: ð4Þ

When no change in the underlying transition probabili-
ties is observed even as time changes, then the Markov chain
is said to be time-homogeneous. A DTMC exhibits temporal
homogeneity if Equation (5) holds:

P Xnþ1 ¼ sj∣Xn ¼ si
� �¼ P Xn ¼ sj∣Xn−1 ¼ si

� �
: ð5Þ

If the DTMC exhibits temporal homogeneity, then the
one-step and n-step transition probabilities are respectively
given as; pij ¼PðXkþ1 ¼ sj∣Xk ¼ siÞ and pðnÞi j ¼PðXnþk ¼
sj∣Xk ¼ siÞ, where k>0.

Each element, pij, of the transition probability matrix is
computed using Equation (6), where nij represent the
observed frequency of one-step transitions from state i to
state j in the historical data:

pij ¼
nij

∑k
j¼1nij

: ð6Þ

To check whether the sequence of events in the given
data follows the Markov property with k states, we use the
Chi-square ðχ2Þ test statistic with ðk − 1Þ2 degrees of free-
dom, as shown in Equation (7):

χ2calc ¼ ∑
k

i¼1
 ∑
k

j¼1

nij − eij
� �

2

eij
; ð7Þ

where nij and eij are the observed and expected transition
frequencies respectively [26, 27]. The expected transition
frequency (eij) is computed using Equation (8):

eij ¼
∑k

i¼1nij
� �

∑k
j¼1nij

� �

∑k
i¼1∑

k
j¼1nij

� � : ð8Þ

To investigate the long-term behavior of a Markov chain,
we use the stationary distribution. The stationary or steady
state distribution of the Markov chain in this study shows the
long-term proportion of time each cause of network outage
spends in a specific state.

Suppose P is the probability transition matrix of the
Markov chain. Then the steady state distribution is calcu-
lated as follows:

(1) Find any eigenvector v of P with eigenvalue 1 by
solving ðP− InÞv¼ 0.

(2) Divide v by the sum of the entries of v to obtain a
normalized vector w whose entries sum to 1.

(3) This vector automatically has positive entries. It is
the unique normalized steady state distribution of
the Markov chain.

3. Results and Discussion

In this section, we provide the results of the data analysis and
a discussion of the findings.

3.1. Descriptive Statistics. A detailed description of the data
used for this study is presented in Tables 1 and 2. The mea-
sures of central tendency are contained in Table 1 while the
measures of dispersion are presented in Table 2. It is obvious
from Table 1 that majority (n= 1,404) of the network
outages was caused by generators while the least number
(18) of outages was caused by communication equipment.
However, longer network outages were caused by fuel issues
with an average outage of 1,027.82min over the study period.
Batteries were responsible for 304 of the network outages,
with an average outage of 48.6min. AC transfer switch
caused 190 network outages over the study period, with an
average outage of 66.95min. Total of 186 of the network
outages were caused by AC circuit breakers, with an average

TABLE 1: Measures of central tendency.

Number of outages Mean Median 5% Trimmed mean

AC circuit breakers 186 67.04 37 45.29
AC transfer switch 190 66.95 49 56.16
Batteries 304 48.60 14 21.86
Commercial AC 138 47.93 29.50 39.76
Communication equip. 18 45.28 40.50 40.81
DC fuse/CB 37 92.35 58 66.39
Environmental systems 20 358.95 284 324.69
Fuel issues 140 1,027.82 56 67.71
Generators 1,404 70.23 45 53.09
Hybrid failure 104 71.28 47 57.08
Rectifiers 183 94.24 57 73.40
Temperature 32 35.19 31.50 32.31
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outage of 67.04min. Shorter network outages were caused by
temperature, with an average outage of 35.19min over the
study period. The outage data were however not normally
distributed, considering the huge differences in the various
measures of central tendency (mean, median, and 5%
trimmed mean).

Table 2 contains the measures of dispersion for the net-
work outage data used in this study. The large standard
deviation (SD) and mean absolute deviation (MAD) values
indicate that there is a lot of variation in the observed net-
work outage data around the mean. This therefore means
that the observed network outage data are quite spread out.

3.2. Discrete-Time Markov Chain Model. To begin with, the
first thing we did was to check if the sequence of the causes of
network outage data we collected followed the Markov

property. Table 3 shows the χ2 test results on a series of
contingency tables derived from the sequence of events
(causes of network outages). Large p-values indicate that
the null hypothesis of the sequence following the Markov
property should not be rejected. Therefore we fail to reject
the null hypothesis that our data on causes of network
outages follow the Markov property since the p-value is
greater than 0.05 (Table 3). Hence, we can proceed to per-
form a Markov chain analysis on our data.

The next step in DTMC modeling, after testing the Mar-
kov property, is to generate the transition probability matrix.
The state transition probability matrix presented in Table 4,
gives the probabilities of transitioning from one state to
another in a single time unit. In this case, the transition
probability matrix gives the probabilities of transitioning
from one cause of network outage to another cause in a

TABLE 3: Testing markovian property.

Chi-square statistic Degrees of freedom p-Value

947.25 416 0.81

TABLE 2: Measures of dispersion.

SD MAD Min Max

AC circuit breakers 97.78 29.65 4 591
AC transfer switch 61.36 39.29 2 442
Batteries 115.55 11.86 2 1,039
Commercial AC 45.55 24.46 3 279
Communication equip. 36.67 25.20 8 154
DC fuse/CB 124.34 60.79 2 616
Environmental systems 260.90 261.68 40 947
Fuel issues 1,0831.89 56.34 2 128,257
Generators 83.79 37.07 1 960
Hybrid failure 72.20 38.55 5 368
Rectifiers 111.59 54.86 5 833
Temperature 27.15 22.24 1 119

TABLE 4: Transition probability matrix for the causes of network outages.

1 2 3 4 5 6 7 8 9 10 11 12

1 0.17 0.08 0.08 0.03 0.01 0.02 0 0.05 0.45 0.05 0.05 0.01
2 0.09 0.12 0.09 0.07 0 0.02 0.01 0.03 0.48 0.03 0.04 0.02
3 0.06 0.06 0.28 0.05 0 0.01 0 0.04 0.44 0.01 0.04 0.01
4 0.09 0.08 0.08 0.14 0.01 0.01 0.01 0.02 0.45 0.01 0.09 0.01
5 0.22 0 0 0.06 0.17 0 0 0 0.50 0.05 0 0
6 0.11 0.05 0.03 0.14 0 0.14 0 0.03 0.43 0.03 0.04 0
7 0.05 0 0.15 0.10 0.05 0.05 0.05 0 0.25 0.15 0.15 0
8 0.09 0.03 0.14 0.04 0 0.02 0.01 0.15 0.40 0.02 0.07 0.03
9 0.05 0.07 0.09 0.04 0 0.01 0.01 0.06 0.57 0.03 0.06 0.01
10 0.05 0.03 0.06 0.07 0.02 0.02 0.01 0.03 0.48 0.17 0.06 0
11 0.07 0.08 0.07 0.05 0.01 0.02 0.01 0.03 0.42 0.04 0.18 0.02
12 0.03 0.03 0.03 0.09 0 0 0 0 0.72 0 0.07 0.03

1=AC circuit breakers, 2=AC transfer switch, 3= batteries, 4= commercial AC, 5= communication equip., 6=DC fuse/CB, 7= environmental systems,
8= fuel issues, 9= generators, 10=hybrid failure, 11= rectifiers, 12= temperature.
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single time unit. Several interesting revelations are presented
in the transition probability matrix. First, the probabilities in
Table 4 reveal that regardless of the present cause of the
network outage, the probability that the next network outage
will be caused by generators is higher than the probability
that the outage will be attributable to any other cause. In
some cases the probability is as high as 0.72. For instance,
if the present cause of network outage is temperature, then
there is a 72% chance that the next cause of network outage
will be generators. Second, if the present cause of network
outage is known to be communication equipment, then we
can tell for sure (probability= 0) that the next cause of net-
work outage will not be AC transfer switch, batteries, DC
fuse/CB, environmental systems, fuel issues, rectifiers, or
temperature. Another interesting revelation from Table 4 is
that, if the present cause of network outage is generators,
then there is a 57% chance that the next cause of network
outage will still be generators. However, if the present cause
of network outage is temperature, then there is only a 3%
(almost impossible) chance that the next network outage will
also be caused by temperature.

For easy understanding of the transition probability
matrix in Table 4, the transition matrix, which gives the
probabilities of transitioning from one cause of network out-
age to another, is presented diagrammatically in Figure 1.
The circular arrows indicate the probability of transitioning
from one cause to itself, while the directional arrows give the
probability of transitioning from one cause of network out-
age to the other.

The steady-state distribution for the causes of network
outage Markov chain is presented in Table 5. Also known as

the stationary distribution, the steady-state distribution is a
probability distribution that remains unchanged in the Mar-
kov chain as time progresses. This indicates that in the long
run (n≥ 16), 51% of the network outages will be caused by
the “Generators” while 10.8% of the network outages will be
caused by the Batteries.” In fact, the top five causes of net-
work outages, in the long run, will include “Generators,”
“Batteries,” “AC Circuit Breakers,” “AC Transfer Sswitch,”
and “Rectifiers,” respectively. On the other hand, the bottom
five causes of network outages, in the long run, will include
“Communication Equip.,” “Environmental Systems,” “Tem-
perature,” “DC Fuse/CB,” and “Hybrid Failure,” respectively
(Table 5).

Markov chain

Temperature

Rectifiers

0.06

Hybrid failure

0.03

Generators 

0.4
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Environmental systems Communication equip.

AC transfer switch

DC fuse/CB

AC circuit breakers
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Commercial AC

0.12
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Batteries
0.28

0.05 

0.14

FIGURE 1: Transition probability diagram for the causes of network outages.

TABLE 5: Steady state distribution.

Causes of network outages Limiting probabilities

AC circuit breakers 0.07
AC transfer switch 0.07
Batteries 0.11
Commercial AC 0.05
Communication equip. 0.00
DC fuse/CB 0.02
Environmental systems 0.01
Fuel issues 0.05
Generators 0.51
Hybrid failure 0.03
Rectifiers 0.07
Temperature 0.01
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The DTMC model developed in this study will also allow
us to visualize how the probabilities change as the number of
steps increases to contrast the expected number of steps.
Thus, we checked the probabilities of a network outage
caused by any of the 12 possible root causes for 12 steps.
From the four subplots of Figure 2, it seems apparent that

generators are the most likely cause of network outages from
Step 1 up to Step 7, irrespective of whether the initial cause of
the network outage is AC circuit breakers, AC transfer
switch, batteries, or commercial AC. However, the likelihood
decays to almost zero for all 12 possible causes of network
outage after Step 7.
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FIGURE 2: 12-Step chain probability predictions when the initial cause of network outage is either “AC Circuit Breakers,” “AC Transfer
Switch,” “Batteries,” or “Commercial AC.”.
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In addition, from the four subplots of Figure 3, it is again
clear that generators are the most likely cause of network
outages irrespective of whether the initial cause of the net-
work outage is communication equipment, DC fuse/CB,
environmental systems, or fuel issues.

Furthermore, the top-left, top-right and bottom left sub-
plots of Figure 4 all indicate that generators are the most
likely cause of network outages from Step 1 up to Step 7
when the initial cause of network outage is either generators,
hybrid failure, or rectifiers. The bottom-right subplot also
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shows that generators are the most likely cause of network
outages from Step 1 all the way to Step 12, when the initial
cause of network outage is temperature.

4. Conclusions

In this study, we applied a DTMC tomodel and study the causes
of power-related telecommunications network outages in
Ghana. The power-related causes of network outages were cate-
gorized into 12 based on Chatanyam [4]. These included AC
circuit breakers, AC transfer switches, batteries, commercial AC,
communication equip., DC fuse/CB, environmental systems,
fuel issues, generators, hybrid failure, rectifiers, and temperature.
The results of the descriptive statistics indicate that the majority
(n= 1,404) of the network outages were caused by generators
while the least number (18) of outages were caused by a com-
munication equipment. However, longer network outages were
caused by fuel issues with an average outage time of 1,027.82min
over the study period. The transition probabilitymatrix obtained
from the data revealed that regardless of the present cause of the
network outage, the probability that the next network outage will
be caused by generators is higher than the probability that the
outage will be attributable to any other cause. The steady-state
distribution indicates that in the long run (n≥ 16), 51% of the
network outages will be caused by the “Generators” while 10.8%
of the network outages will be caused by the “Batteries.”We also
checked and simulated the probabilities of a network outage
caused by any of the 12 possible root causes for 12 steps. It
seemed apparent from the simulations that generators are the
most likely cause of network outages from Step 1 up to Step 7,
irrespective of what the initial cause of the network outage is.
These findings will go a long way to help telecommunications
companies plan early and be ready to deal with network outages
promptly when they occur [28].
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