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Hyperledger Fabric (shortened to Fabric) is an open-source, enterprise-level, permissioned distributed ledger technology platform
with a highly modular, configurable architecture. It supports writing smart contracts in general-purpose programing languages and
has become the preferred choice for enterprise-level blockchain applications. However, the transaction throughput of the Fabric
system remains a critical factor that restricts the further application of this technology in various fields. Therefore, it is necessary to
evaluate and optimize the performance of the Fabric blockchain platform. Existing performance modeling methods need to be
improved in terms of compatibility and effectiveness. To address this, we propose a performance-compatible modeling method for
Fabric using queuing theory, which considers the limited transaction pool and the situation where node groups are attacked. Using
the Fabric 2.0 version as an example, we have established a model of the transaction process in the Fabric network. By analyzing the
model’s continuous 3D time Markov process, we solved the system stationary equation and obtained analytical expressions for
performance indicators such as system throughput, system steady-state queue length, and system average response time. We
conducted extensive analyses and simulations to verify the models’ and formulations’ accuracy and validity. We believe this
approach can be extended to various scenarios in other blockchain systems.

1. Introduction

Hyperledger Fabric (shortened to Fabric) is a consortium
blockchain platform that utilizes the smart contract paradigm
and provides fully operable functionality. Due to its distrib-
uted nature and limitations in data processing, evaluating and
optimizing the performance of various blockchains, including
Fabric, has become a hot topic in academia [1–5]. With the
rapid development and practical application of Fabric, there is
a need for in-depth planning and deployment of network
configurations. Developers need to know in advance whether
the blockchain network’s throughput and latency can meet
their requirements [6]. Additionally, different versions and
configurations of Fabric may impact the performance in
terms of throughput, transaction rejection probability, aver-
age transaction response time, etc.

Many studies have used experimental and formal methods
to evaluate the performance of Fabric with various versions

[7, 8]. However, to our knowledge, no formal method consid-
ering comprehensive parameters has been proposed for Fabric
2.0 [9]. The Fabric 2.0 framework’s different network parame-
ters, such as peers, orders, organizations, block size, the num-
ber of finite transaction pools, as well as the state of the peer
node group, should be considered to support the estimation of
the system’s throughput and transaction latency.

To address this gap, we proposed a theoretical perfor-
mance evaluation model for Fabric 2.0 based on queuing
theory, which has been accepted by BSEW of EASE 2022
[10]. The proposed model considers the limited transaction
pool and constructs a 2D Markov process. However, it does
not consider the scenario where the blockchain peer node
group is under attack or when too many malicious nodes
stop working. The state of the peer node group is also a
critical factor that impacts the blockchain system’s perfor-
mance. Regardless of the consensus mechanism adopted by
the peer node group, there will be a state where the node
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group is working correctly and a state where it stops working.
Therefore, it is crucial to abstract this factor and integrate it
into the performance model.

Building on the conference version paper, this paper
extends and improves the proposed model by considering
the operational status of the peer node group. The contribu-
tions of this paper are as follows:

(1) We establish a queuing theory system for the Fabric
2.0 transaction consensus process.

(2) We consider that the service process of transactions
consists of two parts: block generation and consensus
verification. We establish a queuing theory model
that takes into account limited transaction pools
and peer node group states. By analyzing the model’s
3D continuous-time Markov process, constructing a
subrate matrix, and solving the steady-state probabil-
ity vector of the system’s stationary equations. We
obtain a finite series expression for performance
metrics such as system rejection probability, system
throughput, system queue length, and system execu-
tion time.

(3) We simulate and test the queuing theory model using
the MATLAB R2016a software platform. We adjust
parameters such as transaction pool capacity, transac-
tion arrival rate, and block size to simulate the impact
of system parameters on performance metrics. The
results demonstrate that our proposed model is stable
and accurate. We conducted error analysis on test
data and theoretical data of throughput and transac-
tion response time, verifying the model’s applicability
and effectiveness.

2. Background and Related Work

2.1. Hyperledger Fabric. Hyperledger Fabric (https://github.
com/hyperledger/fabric) is an open-source permissioned
blockchain platform that offers modular components,
including membership services, chain codes, and subscrip-
tion services. Figure 1 illustrates the three-phase transaction
process for a Fabric 2.0 application attempting to update the
ledger.

Proposal phase. In this phase, the application generates a
transaction proposal and sends it to the designated node for
endorsement. Each node participating in the endorsement
will simulate the transaction by executing the chain code
and respond to the transaction proposal by sending it back
to the application.

Ordering and blocking phase. After completing the pro-
posal phase, the application receives an endorsement pro-
posal response from a specific set of nodes. At this stage,
the application submits the endorsed transaction proposal
response and the transaction itself to the order node. The
ordering service creates transaction blocks based on the rel-
evant configuration of the transaction proposal and distri-
butes them to all peer nodes on the channel to proceed to the
next stage.

Verification and submission phase. In this phase, after the
peer node receives the transaction block from the order node
directly or indirectly through gossip, it independently but con-
sistently verifies each transaction in the block and updates the
ledger.

For permissionless distributed blockchains like Ethereum
and Bitcoin, any node can participate in consensus but is
vulnerable to ledger forks. This means that different partici-
pants in the network may have different views on the order
of transactions. Fabric’s order node provides ordering ser-
vices for transactions and solves these problems. Addition-
ally, Fabric’s design relies on a deterministic consensus
algorithm, ensuring that blocks verified by peer nodes are
final and correct. Several different implementations can
achieve strict transaction ordering among order nodes,
such as Solo, Kafka, and Raft. However, the Solo ordering
service implementation is for testing only and contains only
a single order node, so it has been deprecated. While the Raft
allows different organizations to contribute nodes to a dis-
tributed ordering service, its ordering service is easier to set
up and manage than a Kafka-based ordering service. More-
over, the Raft network is compatible with Solo users migrat-
ing to a single node. Therefore, Fabric 2.0 uses Raft as the
consensus algorithm.

In the Raft consensus algorithm, a group of peer nodes
implements the consensus process of transactions by electing
a leader to manage the replication log. The application client
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FIGURE 1: Fabric 2.0 transaction flow.
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submits the transaction proposal containing the endorse-
ment to the order node, which receives transactions from
different application clients simultaneously. Each ordering
node automatically routes received transactions to the cur-
rent leader of the channel. These transactions are packaged
into blocks in a defined order, stored in the ledger of the
order node, and ready to be distributed to all peer nodes that
have joined the channel. Thereafter, each peer node indepen-
dently verifies the received block of transactions in a deter-
ministic manner to ensure that the ledger remains consistent.
Specifically, each peer node in the channel verifies each
transaction in the block independently to ensure that the
node recognizes the required organization. This involves ver-
ifying that the node recognition and recognition strategy
match and that the transaction does not invalidate other run-
ning transactions. Invalid transactions remain in the blocks
created by the ordering node, but the node marks them as
invalid and does not update the ledger’s state. When all peer
nodes complete verification, the block is added to the chain.
Figure 2 shows this consensus process.

2.2. Related Work of Performance Evaluation in Fabric.Many
studies have employed experimental evaluation methods to
assess the performance of different versions of Fabric, includ-
ing Fabric v0.6 [3], v1.0 [2], v1.1 [11], v1.2.1 [12], v1.4 [13],
and others. In a recent study, Dreyer et al. [9] examined the
effect of indicators on the performance of Fabric 2.0 using
testing methods and discovered that Fabric 2.0 outperforms
the previous version in nearly all performance aspects.

In the domain of blockchain, modeling is another effec-
tive method for performance evaluation besides experiments
[1]. Queuing theory is commonly used to model the perfor-
mance of different blockchains, such as Bitcoin [14, 15] and
Fabric [16]. Geyer et al. [17] introduced a queuing theory
model to the Fabric platform and modeled the Solo sorting
process as a queuing system. This model effectively captured
the characteristics of the sorting phase in the solo implemen-
tation, but it is not applicable to the Raft or Kafka implemen-
tation of the later versions of Fabric. Jiang et al. [8] developed
a hierarchical model for the Fabric v1.4.3 platform and
applied queuing theory to analyze the impact of transaction

arrival rate and endorsement timeout rate on the perfor-
mance parameters of the Fabric transaction process.

However, the current models proposed for Fabric have
limitations in terms of scalability. They do not consider a
more detailed transaction processing process, nor do they
investigate the relevant models of transaction pool limita-
tions and node groups being attacked. Additionally, there
is no existing research that provides an analytical solution
for modeling the performance of various versions of Fabric,
including 2.0. To address this challenge, our research builds
an analytical model using queuing theory, which enables
better performance analysis of Fabric 2.0.

3. Performance Modeling

Queuing theory is a mathematical method used to solve the
performance and service quality of different types of queuing
systems. In 1953, Daigle [18] proposed a classification
method for queuing theory models. The representation of
all classification types is described by three factors, namely
X/Y/Z. Here, X represents the distribution of consecutive
customer arrival time intervals during the input process, Y
represents the service time distribution, and Z represents the
number of service desks. In the 1971 Queue Theory Notation
Standardization Conference, the above representation was
extended to the form X/Y/Z/A/B/C. The meaning of the first
three items remains the same, while the last three items are as
follows: A represents the system capacity limit, B represents
the number of customer sources, and C represents service
rules such as first come first served (FCFS), last come first
served, and random service.

The queues in computer communication networks and
blockchain network systems are often arbitrarily complex
and require the help of queuing theory to be solved. The
main focus of this paper is to establish a related queuing
theory model that analyzes the transaction process of Fabric
2.0 and provides a system performance evaluation.

3.1. Models and Parameters. Figure 3 illustrates the transac-
tion consensus process of Fabric 2.0. When transactions are
received by any order node, they are routed to the leader
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FIGURE 2: Consensus process of Fabric.
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node’s transaction pool and queued. The transactions are
then packaged to generate blocks based on the set block
generation time and size. These blocks are distributed to
peer groups for the execution of smart contracts and trans-
action verification. Once all peers have verified the blocks,
they are sent to the blockchain network.

Here, we provide two distribution functions used in this
paper and all parameters and their respective meanings in
Table 1.

Exponential distribution [18]. The probability density
function of a random variable X that follows an exponential
distribution with parameter λ is given by the following:

fX xð Þ ¼ λe−λx; x>0: ð1Þ

The mathematical expectation (or expected value) of a
random variable X is given by the following:

E Xð Þ ¼ 1
λ
: ð2Þ

This means, that on average, the time between two con-
secutive events in a Poisson process is equal to 1/λ. For
example, if λ= 2, then the expected time between two events
is 1/2 units of time.

Generalized Erlang distribution [19]. Consider a two-
stage process where services in stage 1 are exponentially
distributed with parameter μ1 and services in stage 2 are
exponentially distributed with parameter μ2. Use Xi; i¼ 1; 2
to represent the time of each stage, and Y to represent the
time sum of the two stages, that is, Y ¼X1þX2. Then the
distribution function of Y is the convolution of X1 and X2,
that is, Y obeys the two-stage generalized Erlang distribution,
and its probability density is as follows:

fY yð Þ ¼ μ1μ2
μ1 − μ2

e−μ2y − e−μ1yð Þ; y>0: ð3Þ

The mathematical expectation of a random variable Y is
given by the following:

E Yð Þ ¼ 1
μ1
þ 1
μ2

: ð4Þ

4. Queuing System

We built a queuing system for the process of Fabric 2.0.

4.1. Introduction of the Queuing System. Arrival process.
Clients randomly send endorsed transactions to the ordering
node for queuing. Since the randomly sent transaction flow
has no aftereffect (i.e., the number of transaction arrivals in
nonoverlapping time intervals is independent) and stability,
we assume that the transaction arrival follows a Poisson
process. That is the interval between the arrival of two adja-
cent transactions follows the exponential distribution with
parameter λ.

Service process. The transaction service is divided into
two separate phases. The first stage is block generation,
where transactions arrive at the orderer group and are
queued for the leader to package them into blocks. The block
generation time follows an exponential distribution with a
parameter of μ1. The second stage is transaction validation,
where the leader sends the packaged block to the peer node
group to verify the transactions. The transaction validation
time follows an exponential distribution with a parameter of
μ2. So the transaction service time follows the generalized
Erlang distribution, and the average service time is 1

μ1
þ 1

μ2
.

Block generation rules. Transaction arrivals follow the
FCFS principle.

The peer node group is attacked. We assume that the
working status of the peer node group is divided into two
types: normal service status (1) and out-of-service status
when attacked (0). The failure time and repair time of the
peer node group follow the exponential distribution with

Queuing system

Transaction
queue Block generation

Block Block
μ1

μ2λ 1 2 3 ... b–1 b
tx

Peer group
consensus

FIGURE 3: Fabric consensus system.

TABLE 1: Parameters and their meanings.

Parameter Description

M Exponential distribution
GI=G General distribution
X1 The time of a transaction was packaged

X2
The time of a transaction was validated by peer node

group

Y
The sum of the time the transaction was packaged and

validated
N The capacity of queuing system
b The number of transactions contained in a block

λ
The average arrival rate of transactions in queuing

system
μ1 Average block generation service rate of a transaction
μ2 Average consensus service rate of a transaction
α Average failure rate of peer node group
β Average repair rate of peer node group
IðtÞ The number of transactions in the queue at time t
JðtÞ The number of transactions in the block at time t
KðtÞ The working status of the peer node group at time t
Lq The average number of transactions in the queue
Texe Average transaction execution time
Prjc Transaction rejection probability
Tresp Transaction response time
TSP Transaction throughput
Avai The steady-state availability in queuing system
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parameters α and β, respectively. The average failure time
and average repair time are 1

α and
1
β, respectively.

The maximum system capacity. The queuing system can
hold at most N transactions. When no block is generated, the
transaction pool can receive at most N transactions. When
the system performs consensus verification on a block, there
are at most N − b transactions in the queue.

Independence. We assume that all the random variables
defined above are independent of each other.

4.2. A Continuous-Time Markov Process of Queuing System.
In the queuing system, the order node group and the peer
node group are considered two programs of a service station.
The transaction service time follows the second-order gener-
alized Erlang distribution. When the peer node group is
under attack, the transaction is packaged to generate a block
but not verified. Assuming that transactions arrive in the
form of a Poisson process and the transaction pool accom-
modates a limited number of transactions, we establish a 3D
continuous-time Markov process and obtain the system
steady-state probability vector and performance metrics
through matrix analysis.

Let IðtÞ; JðtÞ;KðtÞ represent the number of transactions
in the queue, in the block, and the service status of the peer
node group (0 is attacked state, 1 is normal service state) at
time t. Then, (IðtÞ; JðtÞ;KðtÞÞ can be regarded as the state of
the queuing system at time t, where i¼ 0; 1; 2;⋯;N ; j¼ 0; 1;
2;⋯; b. Specifically, ðN − bþ 1; 0; 0Þ; ðN − bþ 2; 0; 0Þ;⋯;
ðN; 0; 0Þ and ðN − bþ 1; 0; 1Þ; ðN − bþ 2; 0; 1Þ;⋯; ðN; 0;
1Þ denote that when no block is generated in the system, the
number of transactions that can be accommodated in the
queue can reach N . Similarly, ðN − b; 0; 0Þ; ðN − b; 1; 0Þ;⋯;
ðN − b; b; 0Þ and ðN − b; 0; 1Þ; ðN − b; 1; 1Þ;⋯; ðN − b; b; 1Þ
indicate that when the last block is generated, the number of
cross-chain transactions that can be accumulated in the
queue can reach ðN − bÞ. Thus, for each case of (IðtÞ; JðtÞ;
KðtÞÞ in the system, we can write the following set Ω:

Obviously, the random process (IðtÞ; JðtÞ;KðtÞÞ is a 3D
continuous-time Markov process with the state space Ω.
Figure 4 depicts the state transition relationship of {(IðtÞ;
JðtÞ;KðtÞÞ : t ≥ 0g.

Ω¼ i; j; kð Þ : i¼ 0; 1;⋯;N ; j¼ 0; 1; 2;⋯; b; k¼ 0; 1f g ¼ 0; 0; 0ð Þf ; 0; 1; 0ð Þ; 0; 2; 0ð Þ;⋯; 0; b; 0ð Þ; 0; 0; 1ð Þ; 0; 1; 1ð Þ;
0; 2; 1ð Þ;⋯; 0; b; 1ð Þ; 1; 0; 0ð Þ; 1; 1; 0ð Þ; 1; 2; 0ð Þ;⋯; 1; b; 0ð Þ; 1; 0; 1ð Þ; 1; 1; 1ð Þ; 1; 2; 1ð Þ;⋯; 1; b; 1ð Þ;⋯; b; 0; 0ð Þ; b; 1; 0ð Þ;
b; 2; 0ð Þ;⋯; b; b; 0ð Þ; b; 0; 1ð Þ; b; 1; 1ð Þ; b; 2; 1ð Þ;⋯; b; b; 1ð Þ; bþ 1; 0; 0ð Þ; bþ 1; 1; 0ð Þ; bþ 1; 2; 0ð Þ;⋯; bþ 1; b; 0ð Þ;
bþ 1; 0; 1ð Þ; bþ 1; 1; 1ð Þ; bþ 1; 2; 1ð Þ;⋯; bþ 1; b; 1ð Þ;⋯; N − b; 0; 0ð Þ; N − b; 1; 0ð Þ; N − b; 1; 0ð Þ; N − b; 2; 0ð Þ;⋯;
N − b; b; 0ð Þ; N − b; 0; 1ð Þ; N − b; 1; 1ð Þ; N − b; 2; 1ð Þ;⋯; N − b; b; 1ð Þ; N − bþ 1; 0; 0ð Þ; N − bþ 2; 0; 0ð Þ;⋯;
N − 1; 0; 0ð Þ; N; 0; 0ð Þ; N − bþ 1; 0; 1ð Þ; N − bþ 2; 0; 1ð Þ;⋯; N − 1; 0; 1ð Þ; N; 0; 1ð Þg:

ð5Þ

Based on the state transition diagram, Pði; j; kÞ; i¼ 0; 1;
⋯;N ; j¼ 0; 1; 2;⋯; b; k¼ 0; 1, represent the probability of
state ði; j; kÞ. Using this probability, we can derive all the
state difference equations for this system.

For instance, from the state relationship in Figure 5 with
state ð1; 0; 1Þ, we can derive the following state difference
equations: ð0; 0; 1Þ transitions to ð1; 0; 1Þ with a transaction

arrival rate of λPð0; 0; 1Þ; ð1; 0; 0Þ transitions to ð1; 0; 1Þ with
a system repair rate of βPð0; 0; 1Þ; ð1; j; 1Þj¼ 1; 2;⋯; b tran-
sition to ð1; 0; 1Þ with a transaction consensus validation rate
of μ2Pð1; j; 1Þ. Moreover, ð1; 0; 1Þ transitions to ð2; 0; 1Þ with
a transaction arrival rate of λPð1; 0; 1Þ; ð1; 0; 1Þ transitions to
ð1; 0; 0Þ with a system failure rate of αPð1; 0; 1Þ; and ð1; 0; 1Þ
transitions to ð0; 1; 0Þ with a block generation rate of μ1Pð1;

FIGURE 4: State transition diagram.
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0; 1Þ. Thus, the stationary equation for state ð1; 0; 1Þ is as
follows:

− λþ αþ μ1ð ÞP 1; 0; 1ð Þ þ βP 1; 0; 0ð Þ þ λP 0; 0; 1ð Þ
þ μ2 ∑

b

j¼1
P 1; j; 1ð Þ ¼ 0:

ð6Þ
Then, the state difference equations for all states are as

follows:

(i) State fð0; 0; 0Þg:

− λþ βð ÞP 0; 0; 0ð Þ þ αP 0; 0; 1ð Þ ¼ 0: ð7Þ

(ii) State fð0; 0; 1Þg:

− λþ αð ÞP 0; 0; 1ð Þ þ βP 0; 0; 0ð Þ þ μ2 ∑
b

j¼1
P 0; j; 1ð Þ ¼ 0:

ð8Þ

(iii) State fð0; j; 0Þ; j¼ 1; 2;⋯; bg:

− λþ βð ÞP 0; j; 0ð Þ þ αP 0; j; 1ð Þ þ μ1P j; 0; 0ð Þ ¼ 0:

ð9Þ

(iv) State fð0; j; 1Þ; j¼ 1; 2;⋯; bg:

− λþ αþ μ2ð ÞP 0; j; 1ð Þ þ βP 0; j; 0ð Þ þ μ1P j; 0; 1ð Þ ¼ 0:

ð10Þ

(v) State fði; 0; 0Þ; i¼ 1; 2;⋯;N − bg:

− λþ β þ μ1ð ÞP i; 0; 0ð Þ þ λP i − 1; 0; 0ð Þ þ αP i; 0; 1ð Þ ¼ 0:

ð11Þ

(vi) State fði; 0; 1Þ; i¼ 1; 2;⋯;N − bg:

− λþ αþ μ1ð ÞP i; 0; 1ð Þ þ βP i; 0; 0ð Þ þ λP i − 1; 0; 1ð Þ
þ μ2 ∑

b

j¼1
P i; j; 1ð Þ ¼ 0:

ð12Þ

(vii) State fðN − b; j; 0Þ; j¼ 1; 2;⋯; b− 1g:

−βP N − b; j; 0ð Þ þ λP N − b − 1; j; 0ð Þ þ αP N − b; j; 1ð Þ ¼ 0:

ð13Þ

(viii) State fðN − b; j; 1Þ; j¼ 1; 2;⋯; b− 1g:

− αþ μ2ð ÞP N − b; j; 1ð Þ þ λP N − b − 1; j; 1ð Þ
þ βP N − b; j; 0ð Þ ¼ 0:

ð14Þ

(ix) State fði; b; 0Þ; i¼ 1; 2;⋯;N − b− 1g:

− λþ βð ÞP i; b; 0ð Þ þ λP i − 1; b; 0ð Þ þ αP i; b; 1ð Þ
þ μ1P bþ i; 0; 0ð Þ ¼ 0:

ð15Þ

(x) State fði; b; 1Þ; i¼ 1; 2;⋯;N − b− 1g:

− λþ αþ μ2ð ÞP i; b; 1ð Þ þ λP i − 1; b; 1ð Þ þ βP i; b; 0ð Þ
þ μ1P bþ i; 0; 1ð Þ ¼ 0:

ð16Þ

(1, 0, 0)

α

μ1

μ2

μ2

μ2

(0, 1, 1)

(0, 0, 1) (1, 0, 1)

(1, b, 1)

(1, 2, 1)

(1, 1, 1)

(2, 0, 1)

β

λ λ

FIGURE 5: State transition relation in state (1, 0, 1).
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(xi) State fðN − b; b; 0Þg:

−βP N − b; b; 0ð Þ þ λP N − b − 1; b; 0ð Þ þ αP N − b; b; 1ð Þ
þ μ1P N; 0; 0ð Þ ¼ 0:

ð17Þ

(xii) State fðN − b; b; 1Þg:
− αþ μ2ð ÞP N − b; b; 1ð Þ þ λP N − b − 1; b; 1ð Þ
þ βP N − b; b; 0ð Þ þ μ1P N; 0; 1ð Þ ¼ 0:

ð18Þ

(xiii) State fði; 0; 0Þ; i¼N − bþ 1;N − bþ 2;⋯;N − 1g:

− λþ β þ μ1ð ÞP i; 0; 0ð Þ þ λP i − 1; 0; 0ð Þ þ αP i; 0; 1ð Þ ¼ 0:

ð19Þ

(xiv) State fði; 0; 1Þ; i¼N − bþ 1;N − bþ 2;⋯;N − 1g:

− λþ αþ μ1ð ÞP i; 0; 1ð Þ þ λP i − 1; 0; 1ð Þ þ βP i; 0; 0ð Þ ¼ 0:

ð20Þ

(xv) State fðN; 0; 0Þg:

− β þ μ1ð ÞP N; 0; 0ð Þ þ λP N − 1; 0; 0ð Þ þ αP N; 0; 1ð Þ ¼ 0:

ð21Þ

(xvi) State fðN; 0; 1Þ; j¼N − bþ 1;N − bþ 2;⋯;N −

1g:

− αþ μ1ð ÞP N; 0; 1ð Þ þ λP N − 1; 0; 1ð Þ þ βP N; 0; 0ð Þ ¼ 0:

ð22Þ

(xvii) State fði; j; 0Þ; i¼ 1; 2;⋯;N − b− 1; j¼1; 2;⋯; b− 1g:

− λþ βð ÞP i; j; 0ð Þ þ λP i − 1; j; 0ð Þ þ αP i; j; 1ð Þ ¼ 0:

ð23Þ

(xviii) State fði; j; 1Þ; i¼ 1; 2;⋯;N − b− 1; j¼ 1; 2;⋯;
b− 1g:

− λþ αþ μ2ð ÞP i; j; 1ð Þ þ λP i − 1; j; 1ð Þ þ βP i; j; 0ð Þ ¼ 0:

ð24Þ

Our objective is to solve the different equations presented
above. However, solving thousands of differential equations
can be a daunting task. Therefore, we need to identify a class
of algorithms that can converge faster, thereby enabling us to
solve them efficiently.

4.3. Algorithm Design. This section aims to utilize matrix
geometry methods to solve the differential equations. How-
ever, due to the lack of symmetry in the equations, it is not
possible to construct a minimum generator matrix with
blocking characteristics. Therefore, we need to apply certain
transformations to these equations.

Initially, we focus on the state equations fði; 0; kÞ; i¼
N − bþ 1;N − bþ 2;⋯;N − 1; k¼ 0; 1g. This series of states
indicates that the consensus verification in the system has
ceased, and transactions will continue to accumulate until
the queuing system reaches its maximum capacity N .

For Equations (19) and (20), let i¼N − bþ 1, we have
the following:

− λþ β þ μ1ð ÞP N − bþ 1; 0; 0ð Þ þ λP N − b; 0; 0ð Þ þ αP N − bþ 1; 0; 1ð Þ ¼ 0

− λþ αþ μ1ð ÞP N − bþ 1; 0; 1ð Þ þ λP N − b; 0; 1ð Þ þ βP N − bþ 1; 0; 0ð Þ ¼ 0

(
: ð25Þ

That is

λþ β þ μ1ð ÞP N − bþ 1; 0; 0ð Þ − αP N − bþ 1; 0; 1ð Þ ¼ λP N − b; 0; 0ð Þ
βP N − bþ 1; 0; 0ð Þ − λþ αþ μ1ð ÞP N − bþ 1; 0; 1ð Þ ¼ −λP N − b; 0; 1ð Þ

(
: ð26Þ
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If

λþ β þ μ1 −α

β − λþ αþ μ1ð Þ

����
���� ≠ 0: ð27Þ

We have

P N − bþ 1; 0; 0ð Þ ¼ λ λþ αþ μ1ð Þ
λþ αþ μ1ð Þ λþ β þ μ1ð Þ − αβ

P N − b; 0; 0ð Þ

þ λα

λþ αþ μ1ð Þ λþ β þ μ1ð Þ − αβ
P N − b; 0; 1ð Þ

P N − bþ 1; 0; 1ð Þ ¼ λβ

λþ αþ μ1ð Þ λþ β þ μ1ð Þ − αβ
P N − b; 0; 0ð Þ

þ λ λþ β þ μ1ð Þ
λþ αþ μ1ð Þ λþ β þ μ1ð Þ − αβ

P N − b; 0; 1ð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

: ð28Þ

Let

a1 ¼
λ λþ αþ μ1ð Þ

λþ αþ μ1ð Þ λþ β þ μ1ð Þ − αβ
; ð29Þ

b1 ¼
λα

λþ αþ μ1ð Þ λþ β þ μ1ð Þ − αβ
; ð30Þ

a2 ¼
λβ

λþ αþ μ1ð Þ λþ β þ μ1ð Þ − αβ
; ð31Þ

b2 ¼
λ λþ β þ μ1ð Þ

λþ αþ μ1ð Þ λþ β þ μ1ð Þ − αβ
: ð32Þ

Then

P N − bþ 1; 0; 0ð Þ
P N − bþ 1; 0; 1ð Þ

" #
¼ a1 b1

a2 b2

" #
P N − b; 0; 0ð Þ
P N − b; 0; 1ð Þ

" #
:

ð33Þ

Similarly, let i¼N − bþ 2, we get the system of the
equation as follows:

P N − bþ 2; 0; 0ð Þ
P N − bþ 2; 0; 1ð Þ

" #
¼ a1 b1

a2 b2

" #
P N − bþ 1; 0; 0ð Þ
P N − bþ 1; 0; 1ð Þ

" #

¼ a1 b1

a2 b2

" #
2 P N − b; 0; 0ð Þ

P N − b; 0; 1ð Þ

" #
:

⋮
ð34Þ

When i¼N − 1

P N − 1; 0; 0ð Þ
P N − 1; 0; 1ð Þ

" #
¼ a1 b1

a2 b2

" #
P N − 2; 0; 0ð Þ
P N − 2; 0; 1ð Þ

" #

¼ a1 b1

a2 b2

" #
b−1 P N − b; 0; 0ð Þ

P N − b; 0; 1ð Þ

" #
:

ð35Þ

Let

Gj1 Gj2

Hj1 Hj2

" #
¼ a1 b1

a2 b2

" #
j

; j¼ 1; 2;⋯; b − 1: ð36Þ

Then

P N − bþ j; 0; 0ð Þ
P N − bþ j; 0; 1ð Þ

" #
¼ Gj1 Gj2

Hj1 Hj2

" #
P N − b; 0; 0ð Þ
P N − b; 0; 1ð Þ

" #
:

ð37Þ

That is

P N − bþ j; 0; 0ð Þ ¼ Gj1P N − b; 0; 0ð Þ þ Gj2P N − b; 0; 1ð Þ
P N − bþ j; 0; 1ð Þ ¼ Hj1P N − b; 0; 0ð Þ þ Hj2P N − b; 0; 1ð Þ

(
:

ð38Þ
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We can combine Equations (21) and (22) as follows:

β þ μ1ð ÞP N; 0; 0ð Þ − αP N; 0; 1ð Þ ¼ λP N − 1; 0; 0ð Þ
βP N; 0; 0ð Þ − αþ μ1ð ÞP N − b; 0; 1ð Þ ¼ −λP N − 1; 0; 1ð Þ

(
:

ð39Þ

When

β þ μ1 −α

β − αþ μ1ð Þ

����
���� ≠ 0: ð40Þ

Then

P N; 0; 0ð Þ ¼ λ αþ μ1ð Þ
αþ μ1ð Þ β þ μ1ð Þ − αβ

P N − 1; 0; 0ð Þ þ λα

αþ μ1ð Þ β þ μ1ð Þ − αβ
P N − 1; 0; 1ð Þ

P N; 0; 1ð Þ ¼ λβ

αþ μ1ð Þ β þ μ1ð Þ − αβ
P N − 1; 0; 0ð Þ þ λ β þ μ1ð Þ

αþ μ1ð Þ β þ μ1ð Þ − αβ
P N − 1; 0; 1ð Þ

8>>><
>>>:

: ð41Þ

Let

aN ¼
λ αþ μ1ð Þ

αþ μ1ð Þ β þ μ1ð Þ − αβ
; bN ¼

λα

αþ μ1ð Þ β þ μ1ð Þ − αβ
;

ð42Þ

cN ¼
λβ

αþ μ1ð Þ β þ μ1ð Þ − αβ
; dN ¼

λ β þ μ1ð Þ
αþ μ1ð Þ β þ μ1ð Þ − αβ

:

ð43Þ

Then

P N; 0; 0ð Þ
P N; 0; 1ð Þ

" #
¼ aN bN

cN dN

" #
Gb−1;1 Gb−1;2

Hb−1;1 Hb−1;2

" #
P N − b; 0; 0ð Þ
P N − b; 0; 1ð Þ

" #
:

ð44Þ

That is

P N; 0; 0ð Þ ¼ aNGb−1;1 þ bNHb−1;1

À Á
P N − b; 0; 0ð Þ

þ aNGb−1;2 þ bNHb−1;2

À Á
P N − b; 0; 1ð Þ

P N; 0; 1ð Þ ¼ cNGb−1;1 þ dNHb−1;1

À Á
P N − b; 0; 0ð Þ

þ cNGb−1;2 þ dNHb−1;2

À Á
P N − b; 0; 1ð Þ

8>>>><
>>>>:

:

ð45Þ

Taking Equations (33–35) and (45) into (15–18), we get
the following:

− λþ βð ÞP N − 2bþ j; b; 0ð Þ þ λP N − 2bþ j − 1; b; 0ð Þ
þ αP N − 2bþ j; b; 1ð Þ þ μ1Gj;1P N − b; 0; 0ð Þ
þ μ1Gj;2P N − b; 0; 1ð Þ ¼ 0; j¼ 1; 2;⋯; b − 1;

ð46Þ

− λþ αþ μ2ð ÞP N − 2bþ j; b; 1ð Þ þ λP N − 2bð
þ j − 1; b; 1Þ þ βP N − 2bþ j; b; 0ð Þ
þ μ1Hj;1P N − b; 0; 0ð Þ þ μ1Hj;2P N − b; 0; 1ð Þ
¼ 0; j¼ 1; 2;⋯; b − 1;

ð47Þ

−βP N − b; b; 0ð Þ þ λP N − b − 1; b; 0ð Þ þ αP N − b; b; 1ð Þ
þ μ1 aNGb−1;1bNHb−1;1

À Á
P N − b; 0; 0ð Þ

þ μ1 aNGb−1;2 þ bNHb−1;2

À Á
P N − b; 0; 1ð Þ ¼ 0;

ð48Þ

− αþ μ2ð ÞP N − b; b; 1ð Þ þ λP N − b − 1; b; 1ð Þ
þ βP N − b; b; 0ð Þ þ μ1 cNGb−1;1 þ dNHb−1;1

À Á
P Nð

− b; 0; 0Þ þ μ1 cNGb−1;2 þ dNHb−1;2

À Á
P N − b; 0; 1ð Þ ¼ 0:

ð49Þ

By combining Equations (7–14), (19–24), and (46–49),
we can form a system of modified equations. This system can
be used to obtain a 2ðN − bþ 1Þ× 2ðN − bþ 1Þ minimum
generator matrix.

Q¼

B0 A0

B1 A1 A0

B2 A1 A0

⋮ A1 A0

⋮ ⋱ ⋱
Bb A1 A0

Bb A1 A0

Bb ⋱ ⋱
⋱ ⋱ ⋱

⋱ A1 A0

Bb C1 C2 ⋯ Cb−1 AM

2
666666666666666666666664

3
777777777777777777777775

;

ð50Þ
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where A0;A1;B0;Bi ði¼ 1; 2;⋯; bÞ;Cj ðj¼ 1; 2;⋯; b− 1Þ;
AM are 2ðbþ 1Þ× 2ðbþ 1Þ-order square matrix, and

A0 ¼

λ

λ

⋱
λ

2
66664

3
77775; ð51Þ

A1 ¼

− λþ β þ μ1ð Þ β

α − λþ αþ μ1ð Þ
− λþ βð Þ β

μ2 α − λþ αþ μ2ð Þ
⋮ ⋱

⋱ ⋱ − λþ βð Þ β

μ2 α − λþ αþ μ2ð Þ

2
6666666666664

3
7777777777775
; ð52Þ

B0 ¼

− λþ βð Þ β

α − λþ αð Þ
− λþ βð Þ β

μ2 α − λþ αþ μ2ð Þ
⋮ ⋱

⋱ ⋱ − λþ βð Þ β

μ2 α − λþ αþ μ2ð Þ

2
6666666666664

3
7777777777775
; ð53Þ

B1 ¼
0 0 μ1 0 ⋯ 0 0

μ1

⋮

2
64

3
75; ð54Þ

B2 ¼
0 0 0 0 μ1 ⋯ 0 0

μ1

⋮

2
64

3
75

⋮

Bb ¼
0 0 0 0 ⋯ μ1

μ1

2
64

3
75;

ð55Þ

C1 ¼

0 0 ⋯ 0 μ1G11 μ1G11

μ1H12 μ1H12

2
66664

3
77775; ð56Þ

C2 ¼

0 0 ⋯ 0 μ1G21 μ1G21

μ1H22 μ1H22

2
66664

3
77775

⋮

Cb−1 ¼

0 0 ⋯ 0 μ1Gb−1;1 μ1Gb−1;2

μ1Hb−1;2 μ1Hb−1;2

2
66664

3
77775;

ð57Þ
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AM ¼

− λþ β þ μ1ð Þ β

α − λþ αþ μ1ð Þ
−β β

μ2 α − αþ μ2ð Þ
⋮ ⋱

⋱ ⋱ −β β

μ2 α − αþ μ2ð Þ

2
6666666666664

3
7777777777775
; ð58Þ

Let π¼ðπ0; π1; π2;⋯; πN−bÞ be the steady-state probabil-
ity vector of matrix Q, and each subvector πi¼ðπi00; πi01;
πi10; πi11; πi20; πi21;⋯; πib0; πib1Þ; i¼ 1; 2;⋯;N − b is a
2ðbþ 1Þ-dimension row vector. Then, the modified steady-
state equations can be expressed as follows:

πQ¼ 0

πe¼ 1

(
; ð59Þ

where e is a column vector of appropriate dimension, then
we have the following:

π0B0 þ π1B1 þ π2B2 þ⋯þ πbBb ¼ 0 ; ð60Þ

π0A0 þ π1A1 þ πbþ1Bb ¼ 0 ; ð61Þ

πi−1A0 þ πiA1 þ πiþbBb ¼ 0; i¼ 2; 3; ⋯;N − 2b; ð62Þ

πi−1A0 þ πiA1 þ πN−bCi− N−2bð Þ ¼ 0; i¼ N − 2bþ 1;
N − 2bþ 2;⋯;N − b − 1;

ð63Þ

πN−b−1A0 þ πN−bAM ¼ 0 ; ð64Þ

πe¼ 1: ð65Þ

Since the matrix A0 is a diagonal matrix, according to the
matrix analysis method to solve the steady-state probability
vector in the study of Elhafsi and Molle [20], we express the
diagonal matrix A0 as A0¼ λI (I is a square identity matrix of
2ðbþ 1Þ-order). Let RN−b¼ I, then

πN−b ¼ πN−bRN−b: ð66Þ

According to Equation (64),

πN−b−1 ¼ πN−b −
1
λ
AM

� �
¼ πN−bRN−b−1: ð67Þ

Here, RN−b−1¼ −
1
λAM is called the subrate matrix.

Taking Equations (67) into (63), we get the following:

πN−b− iþ1ð Þ ¼ πN−b −
1
λ

RN−b−iA1 þ Cb−ið Þ
� �

¼ πN−bRN−b− iþ1ð Þ; i¼ 1; 2;⋯; b − 1;
ð68Þ

Where

RN−b− iþ1ð Þ ¼ −
1
λ

RN−b−iA1 þ Cb−ið Þ; i¼ 1; 2;⋯; b − 1:

ð69Þ

Taking Equation (68) into Equation (62), we get the
following:

πN−b− iþ1ð Þ ¼ πN−b −
1
λ

RN−b−iA1 þ RN−iBbð Þ
� �

¼ πN−bRN−b− iþ1ð Þ; i¼ b; bþ 1;⋯;N − b − 1;

ð70Þ

Where

RN−b− iþ1ð Þ ¼ −
1
λ

RN−b−iA1 þ RN−iBbð Þ; i¼ b; bþ 1;⋯;

N − b − 1:

ð71Þ

According to Equation (64), we get the following:

π0 ¼ −πN−b R1B1 þ R2B2 þ⋯þ RbBbð ÞB−1
0 ¼ πN−bR0:

ð72Þ

Then

R0 ¼ R1B1 þ R2B2 þ⋯þ RbBbð ÞB−1
0 : ð73Þ

The solving process of Ri are shown in Algorithm 1.
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For solve πN−b, we combine Equations (61) and (65)

πN−b R0A0 þ R1A1 þ Rbþ1Bbð ÞB−1
0 ¼ 0

πN−b R0 þ R1 þ R2 þ⋯þ RN−b−1 þ Ið Þ ¼ 1:

(
ð74Þ

Substitute the solved πN−b into Equations (66–72), we
obtain the steady-state probability vector π¼ðπ0; π1; π2;
⋯; πN−bÞ.

5. Performance Analysis

In order to ensure the stability of the queuing system, we
have:

lim
tÀ!þ1 I tð Þ ¼ Lq; lim

tÀ!þ1 J tð Þ ¼ Jb; lim
tÀ!þ1K tð Þ ¼ Kb:

ð75Þ

Based on the steady-state probability π¼ðπ0; π1; π2;⋯;
πN−bÞ of this system, we present the finite series forms of
several main indicators that reflect the performance of the
queuing system, as follows:

(1) Average queue length in queuing system

E Lq
À Á¼ ∑

N−b

i¼1
i∑
b

j¼0
∑
1

k¼0
πijk

 !
: ð76Þ

(2) Transaction rejection probability in queuing system

Prjc ¼ ∑
b

j¼0
∑
1

k¼0
πN−b;j;k: ð77Þ

(3) Average transaction execution time in queuing system

E Texeð Þ ¼ ∑
b−1

i¼0
∑

N−b−l
b½ �

h¼0
πhbþl;0;1 hþ 1ð Þ 1

μ1
þ 1
μ2

� �

þ ∑
b−1

i¼0
∑

N−b−l
b½ �

h¼0
∑
b

j¼1
πhbþl;j;1

1
μ2
þ hþ 1ð Þ 1

μ1
þ 1
μ2

� �� �

þ ∑
b−1

i¼0
∑

N−b−l
b½ �

h¼0
∑
b

j¼1
πhbþl;j;0 hþ 1ð Þ 1

μ1

� �
:

ð78Þ

The proof process is analogous to the literature [15],
where ½N−b−l

b � is an integer function.

(4) Average transaction response time in queuing system

E Tresp

À Á¼ E Lq
À Á

λ 1 − Prjc
À Á : ð79Þ

(5) Throughput in queuing system

TPS¼ λ 1 − Prjc
À Á

: ð80Þ

(6) Availability in queuing system

Avai ¼ ∑
N−b

i¼0
∑
b

J¼0
πij1: ð81Þ

System availability is defined as the probability that a
group of peers is functioning correctly. In the event of an
attack on the peer node group, the system may become
unavailable, resulting in an accumulation of transactions in
the queue.

To obtain the trends of performance indicators in relation
to any relevant parameter, we can refer to Equations (76–81).
However, numerical calculations require us to simulate the
model results by setting the parameter variation range based
on the system architecture’s configuration.

6. Model Simulation and Validation

In this section, we will vary several critical parameters, such
as transaction arrival rate, queuing system capacity, and
block generation rate, to simulate the performance indicators
of the Fabric 2.0 system.

6.1. Simulation Experiment Setup. To analyze the influence of
system parameters on the above performance indicators of
the system, we used the MATLAB R2016a software platform
to simulate the impact of varying parameter values on the
performance indicators. By setting different parameter
values and running simulations, we verified the accuracy of
our model and analyzed the system’s sensitivity to different
parameters.

Input: I; λ;AM ;N; b;A1;C1;C2;⋯;Cb−1;B0;Bb

Output: R0;R1;⋯;RN−b

1. RN−b ÀI
2. RN−b−1 À−

1
λAM

3. for i À1 to b− 1 by 1 do

4.RN−b−ðiþ1Þ À−
1
λ ðRN−b−iA1þCb−iÞ

5. end for

6. for i Àb to N − b− 2 by 1 do

7. RN−b−ðiþ1Þ À−
1
λ ðRN−b−iA1þRN−iBbÞ

8. end for

9. R0 ÀðR1B1þR2B2þ⋯þRbBbÞB−1
0

ALGORITHM 1: Ri algorithm.
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6.2. Performance Evaluation

(1) Influence of transaction arrival rate λ

In this section, we set μ1¼ μ2¼ 40 ðtx=sÞ, the capacity of the
queuing system N ¼ 1;000 ðtxsÞ, and the failure rate and the
repair rate of the peer node group are α¼ β¼ 80 ðtx=sÞ, respec-
tively.When the range of λ is set to 200–4,000 ðtx=sÞ, Figure 6(-
a)–6(f) shows changes in performance indicators such as the
rejection probability of the system, and the average transaction
response time in different block size b, and different λ.

From Figure 6(a)–6(f), we can observe that the perfor-
mance indicators are significantly impacted by the transac-
tion arrival rate λ. However, the throughput is not affected by
the block size, which is proportional to the transaction
arrival rate. When the block size is large, the transaction
arrival rate decreases, and the average transaction execution
time becomes unstable. This is because the system generates
blocks irregularly due to the small number of transactions
arriving. When the block size is increased, the queue length,
average transaction response time, and transaction arrival
rate are proportional and inversely proportional, respec-
tively. However, when the block is larger, and the transaction
arrival rate is larger, the rejection probability is correspond-
ingly large, and the system availability becomes small. In
view of the mutual restraint and constraints of several per-
formance indicators, blindly following large blocks and high
transaction arrivals will not have good performance.

(2) Influence of queuing system capacity (N)

To explore the effect of system capacity N on system
performance, we set the variation range of N from 100 to
4,000 ðtxsÞ. At this time, if the transaction arrival rate
λ ðtx=sÞis set too small, the performance indicators will be
unstable, so we set λ¼ 3;000 ðtx=sÞ, and μ1¼ μ2¼ 100 ðtx=sÞ
and α¼ β¼ 100 ðtx=sÞ. Figure 7(a)–7(f ) shows the trend of
change with each performance indicator.

Figure 7(a)–7(f ) illustrates that the system is in an unsta-
ble state when the system capacity N is less than 600. At this
time, the images of various performance indicators of the
system experience severe shaking. The main reason is that
the system capacity is too small, and excessive instantaneous
trading can lead to system collapse. When the capacity of the
system is above 600 ðtxsÞ, the system gradually stabilizes. As
N increases, the queue length and response time increase
proportionally, and the larger the block, the greater the effect
and growth rate. But when the block is small, such as b¼
10 ðtxsÞ, the large capacity of the system will cause the model
to fail. Mainly because the block size is set too small, the
system load increases, and the model fails. Therefore, an
appropriate block size (such as 30–50 ðtxsÞ) can ensure the
optimal performance of the system.

(3) Influence of transaction consensus rate (μ1) or trans-
action generating rate (μ2Þ

The parameters μ1 and μ2 represent the consensus rate
for blocks and the block generation rate, respectively. Their

values are related to the performance of ordering nodes and
peer nodes. We assume that the ranges of μ1 and μ2 are both
0–100 ðtx=sÞ. When λ¼ 1;000 ðtx=sÞ and N ¼ 1;000 ðtxsÞ,
and α; β take values of 100ðtx=sÞ. Figure 8(a)–8(f ) shows the
variation of the performance metrics with respect to μ1 at
different block sizes.

From Figure 8(a)–8(f), it can be seen that the change of
μ1 has little effect on the length of the queue, the response
time to the transaction, and the system throughput. How-
ever, with the increase of μ1, the rejection probability first
decreases and then tends to 0, the execution time decreases
accordingly, and the system availability gradually increases
and tends to be stable. This is because the higher the effi-
ciency of the transaction block, the higher the probability of
receiving the transaction, the lower the probability of rejec-
tion, and the shorter the transaction execution time. When
μ1 is fixed, changes in block size b have very little effect on
throughput and execution time. As block size increases, the
queue length and response time decrease accordingly, so
large blocks are the best option in the current state. Since
each performance indicator has a similar trend of change to
μ2, it will not be described in detail here.

(4) Influence of peer node group failure rate (α) or repair
rate ðβÞ

The parameters α; β represent the failure rate and repair
rate of the peer node group, respectively. Their values are
related to the severity of damage to the node group under
attack and the speed of the repair process. The range of
values for α; and β is 20–400 ðtx=sÞ, which allows us to calcu-
late the average failure time and repair time for the system’s
current state. Assuming λ¼ 1;000 ðtx=sÞ;N ¼ 1;000 ðtxsÞ,
and fixing μ1 and μ2 to 40 ðtx=sÞ, Figure 9(a)–9(f) shows the
trend of performance indicators under different block size
settings.

From Figure 9(a)–9(f), it can be seen that the change of α
has little effect on the system throughput and transaction
rejection probability. As α increases, the mean time to failure
of the peer node group decreases, resulting in a decrease in
queue length, transaction execution time, and transaction
response time. The system availability also tends to be stable.
These changes can be explained by the increase in transac-
tion execution speed. When the block size is set to b¼
10 ðtxsÞ, the system may become unstable, indicating that
the block size should not be too small.

The impact of β on performance indicators is similar to α
and does not require repetition here.

Since different parameters have an independent relation-
ship, it is appropriate to study the impact of each parameter
on the system’s performance indicators. The figures provided
in the previous section can also be used to conduct sensitivity
analysis of different parameters on performance metrics. For
example, the study shows that the system’s throughput is
sensitive to the transaction arrival rate (λ), and the transac-
tions throughput (TPS) and λ are consistent over time.

The queue length of the system (Lq) is sensitive to param-
eters such as transaction arrival rate (λ), network size (N),
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consensus rate (μ1), and failure rate (α), especially when
network size (N) increases. To ensure normal system opera-
tion, the block size setting (b) needs to be continuously
increased. The execution time of the transaction (Texe) is
less affected by N, and other parameters, such as transaction
pool capacity (N), have less impact on performance. The
block size (b) can only play a role in combination with λ
and other parameters. There is a relationship between several
performance indicators and influencing parameters, so set-
ting an appropriate block size is crucial to optimize the per-
formance of Fabric and meet the system’s performance
requirements.

Our study highlights the critical role of transaction pool
capacity (N) and node group working status (α) on the per-
formance of the system cannot be overstated, in contrast to
previous studies that have overlooked their importance.
Therefore, it is crucial to set optimal values for N and α to
enhance the efficiency of transaction processing and ensure
the security of the system.

6.3. Model Experimental Verification. To validate the accu-
racy of our proposedmodel, we deployed a Fabric 2.0 network
on a high-performance server with 48C 187G specifications,
using the Raft ordering service to establish an ordering node
and a validator group node that comprises three peers. We
utilized Hyperledger Caliper (https://github.com/hyperledger/
caliper), a benchmarking tool, to evaluate the performance of
various blockchain solutions under custom use cases. The sys-
tem’s capacity was set to N ¼ 500 ðtxsÞ; b¼ 20 ðtxsÞ; μ1¼
40 ðtx=sÞ; μ2¼ 10 ðtx=sÞ and the transaction arrival rate (λ)
was vary from 500 to 3,000 ðtx=sÞ. We also assumed that the
node group verification would halt for 50ms, followed by a
40ms restart, resulting in α¼ 20 ðtx=sÞ and β¼ 25 ðtx=sÞ.
We conducted tests to measure the average transaction
response time and system throughput and compared the results
with the theoretical values.

As depicted in Figures 10 and 11, a comparison between
the theoretical and test values of the system’s throughput and
cumulative probability was conducted. It is evident that the

system’s throughput test value dwindled to 1.41 (txs) when
the transaction arrival rate reached 2,200 (tx/s), owing to a
node cluster failure that halted the system’s operation. None-
theless, disregarding the test value’s outlier, the theoretical
throughput value aligns almost perfectly with the test value.
Furthermore, the maximum throughput error does not exceed
162 (txs), which is negligible in comparison to the vast range of
throughput levels. These results suggest that the throughput
equation of the queuing system is highly effective.

As depicted in Figures 12 and 13, a comparison between
the theoretical and test values of transaction response time
and cumulative probability was conducted. Our findings
indicate that when the transaction arrival rate exceeds 600
(tx/s), the test value of the transaction response time is
lower than the theoretical value. This phenomenon can be
attributed to the limited number of peer nodes, resulting in
an actual verification rate for block consensus that surpasses
the theoretical verification rate, thereby leading to a slightly
better test value effect. Nonetheless, the maximum error
between the theoretical and test values of response time is
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12.28 (ms), and the average error is 8.09 (ms), highlighting
the need for repeated experiments to mitigate the error
difference.

7. Discussion and Conclusion

In this study, we present a viable and scalable modeling
approach based on Fabric 2.0. Our methodology involves
the development of a queuing theory model that accounts
for both the finite transaction pool and the fault state of node
groups. We utilized the geometric matrix method and sub-
rate matrix method to derive the solution of the difference
equation and obtain crucial performance indicators related
to the queuing system model, including the system queue
length, system rejection probability, transaction delay time,
and response time. Subsequently, we conducted a series of
experiments to validate the simulation model by simulating
the system’s performance through a parameter change pro-
cess simulation and verifying the model’s effectiveness.
Finally, we assessed the applicability of the proposed model
by benchmarking experimental data against theoretical data.

The modeling approach proposed in this study can be
extended to other blockchain systems with similar processes.
As an example, we applied the approach to a typical block-
chain cross-chain technology, Cosmos, to assess the model’s
applicability. The research outcomes have been published in
the renowned international conference ICPADS 2022 [21].

The work presented in this paper has several limitations.
First, our modeling approach is limited to detecting perfor-
mance indicators such as maximum throughput and mini-
mum transaction delay under current settings, such as a
predetermined consensus mechanism and a fixed number
of nodes. While adjusting system parameters under the cur-
rent transaction arrival rate and block size settings can pro-
vide optimal system states, these parameters’ optimal values
cannot surpass the blockchain architecture’s rigid con-
straints. Second, the performance metrics obtained from
our model are probabilistic average values. In the case of
abnormal conditions, such as system failure caused by a large

influx of transactions or outlier events induced by consensus
mechanism attacks, identifying their underlying causes may
be challenging.

Therefore, future research directions should focus on two
aspects. First, it is necessary to supplement other relevant
variables and conduct performance analysis on blockchain
systems to optimize the existing queuing theory models. Sec-
ond, the research should aim to develop an error analysis for
the consequences of outliers.
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