
Research Article
Hybrid Agent-Based Load-Balancing Approach Used in an
IaaS Platform

Shoney Sebastian ,1 Iyyappan. MIn ,2 Sultan Ahmad ,3,4

Mohammad Maqbool Waris ,5 Hikmat A. M. Abdeljaber ,6 and Jabeen Nazeer 3

1Department of Computer Science, CHRIST University, Hosur Road, Karnataka, Bengaluru 560029, India
2College of Information Technology, Ahlia University, P.O. Box 10878, Manama, Bahrain
3Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University,
P.O. Box 151, Alkharj 11942, Saudi Arabia
4University Center for Research and Development (UCRD), Department of Computer Science and Engineering,
Chandigarh University, Gharuan, Mohali 140413, Punjab, India
5Department of Mechanical Engineering, Adama Science and Technology University, Adama, Ethiopia
6Department of Computer Science, Faculty of Information Technology, Applied Science Private University, Amman, Jordan

Correspondence should be addressed to Mohammad Maqbool Waris; mohammad.waris@astu.edu.et

Received 27 February 2023; Revised 30 March 2024; Accepted 15 April 2024; Published 26 April 2024

Academic Editor: Qiang Ye

Copyright © 2024 Shoney Sebastian et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cloud computing has received a resounding welcome. It was created following methodical and thorough study in web services,
distributed computing, utility computing, and virtualization, and it offers several benefits, including lower costs, less space required,
and easier management. These advantages bring in a significant number of new users to the cloud platform every day. In addition,
because cloud computing is an Internet-based computing paradigm, it must deal with the issue of overwhelming demands through
effective load-balancing. A very small number of studies only focus on load-balancing problems in cloud computing platforms, while
the majority of load-balancing research is accessible in many domains, including parallel, distributed, and grid computing. Infra-
structure as a Service (IaaS), Software as a Service, and Platform as a Service are the three basic categories under which cloud
computing falls. For these models, there are notable differences in the load-balancing techniques used. This work compared the
outcome with the current method and presented a hybrid agent-based load-balancing approach for the IaaS platform.

1. Introduction

In the distributed computing paradigm, Armbrust et al. [1]
and Uddin and Ahmad [2] explained that cloud computing
provides an environment to access virtualized hardware and
software over the internet. Grossman [3] mentioned that
virtualization is one of the essential characteristics of cloud
computing. Lee and Zomaya [4] andAliabadi andAhmadi [5]
provide a feasible solution for managing physical resources
dynamically. It brings out a significant reduction in the num-
ber of physical servers required in the data center, as a result,
increases resource utilization and decreases the management
complexity. Sotomayor et al. [6], through virtualization tech-
nologies, mapping multiple virtual machines (VMs) on phys-
ical servers ensures the entire system’s resource utilization

dynamically. However, since the resources in cloud comput-
ing platforms are highly vibrant and heterogeneous, VMs
need to be dynamically adaptive to the cloud platform to
achieve maximum performance. For that, the available physi-
cal resources must be efficiently allocated, and a proper load-
balancing strategy needs to be implemented. Since the arrival
of jobs in cloud computing is not predictable and individual
nodes connected to the cloud vary in their physical capacities,
many crucial problems such as performance, security, and
availability need to be addressed for the realization of cloud
computing. Efficient utilization of the resources and a proper
sharing of load among available resources increase the cloud-
based application’s performance. Load balancer plays a signif-
icant role in this regard. Azeez [7] load-balancing strategy
can be static, dynamic, or mixed. Amazon EC2 replicates

Hindawi
Wireless Communications and Mobile Computing
Volume 2024, Article ID 2357142, 9 pages
https://doi.org/10.1155/2024/2357142

https://orcid.org/0000-0002-1296-884X
https://orcid.org/0000-0002-5836-307X
https://orcid.org/0000-0002-3198-7974
https://orcid.org/0000-0003-0471-4177
https://orcid.org/0000-0001-9557-3933
https://orcid.org/0000-0002-9242-6230
mailto:mohammad.waris@astu.edu.et
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

instances of themiddleware platform for web services to achieve
dynamic load balancing. When the load exceeds the predefined
threshold, new instances of the platform are started [7].

This paper proceeds with the details of related works in
Section 2, a review of the literature, the proposed method in
Section 3, Section 4 proposed algorithm, Section 5 experi-
ment and result analysis, and Section 6 conclusion.

2. Literature Review

As per Chow and Kohler [8] and Ni and Hwang [9], to bal-
ance the resources of the computing environment the loads
are equally distributed into the parallel executions. In tradi-
tional computing environments, such as distributed, parallel,
and grid computing, several static, dynamic, and mixed
scheduling strategies, are proposed by the researchers. Load-
balancing techniques can be centralized or distributed. In the
centralized approach [8, 9], the load-balancing decision is
taken in one place and communicated to the entire system.
This strategy ensures better load-balancing decisions at the
cost of reduced scalability. Corradi et al. [10] proposed the
diffusive policy for the equal distribution load but to accom-
plish the task rebalancing aim, volatile concurrent programs
must be executed efficiently. This needs the running distribu-
tion choices. Designing a universal allotment mechanism is
challenging, as it must react with the fluid nature of the appli-
cation being used [10]. A diffusive policy can accomplish uni-
versal leveling in fixed-load scenarios by combining separate
operations. This is caused by the entire penetration across all
zones. The preceding summary of diffusive rules does not
include regulations that need worldwide alignment of their
behavior. In a comparable manner it eliminates strategies
that employ dispersion to spread workload data as well as
provide a global view of the system. None of these methods
is expandable, because they are challenging to set up in sub-
stantially comparable infrastructures. The dispersion strategy
may act as a basis for a variety of approaches. The way they are
implemented ought to tackle a number of challenges during
the neighborhood decision-making stage, which needs to
occur preceding behavior or load migrations. Specifically,
for every node: The beginning stage was the selection element,
which sets the circumstances that initiate the subsequent
rebalancing stages. The situation assessment stage determines
if networks across the domain are going to require overload
measures. The placement element is an assessment part that
detects the region’s underloaded vertices (users) and over-
loaded vertices (transmitters) that require intervention. The
choice stage is an assessment part that determines what data
to transfer from source to destination networks.

Kale [11], meanwhile, distributed approaches are designed
to be scalable but yield poor quality load distribution on
extremely large machines and take more time to give good
solutions in a very dynamic environment. Adaptive bal-
anced load solutions must be used for concurrent execution
of unexpectedly designed calculations. I evaluated the effi-
cacy with two such techniques. The acquiring inside area
tackle involves sending fresh targets down the greatest demand
grade to the regional optimum inside a certain distance of

the origin of simultaneous execution. The objective cannot be
returned by this execution later. The gradient mechanism
is greater in sophistication. The system aims to shift labor
between individuals with ample parallel to people who are
at risk of becoming unproductive. As standard, the code is
stored on-site and transmitted forth after an unused router is
detected. It requires an unfinished entity to fulfill the balance
of load duties. One of the main problems of the existing paper
cloud services in terms of security and usability has been
addressed by global communication. The study supports cloud
federation as a solution to these kinds of cloud service users’
needs. By decreasing execution times and the number of users
who had to wait, as well as by improving the status of user
requests, the cloud federation suggested in this study has
addressed the problems previously discussed. By calculating
on progress tasks corresponding to the number of VMs, as
detailed in the existing technique, the suggested system has
demonstrated that the central management system can detect
the idle or less loaded VM. Using subscription identities to
access cloud resources from several cloud service providers
serves as an example. The time consumption is effectively
reduced when CSCs employ multiple identities to access
resources on several CSPs, as the results clearly show. The
execution time is shortened since the subscription ID is suffi-
cient to access the service without the need for federated
clouds, based on all the algorithms and results received; this
lessens the workload on the central management system that
3,115ms are needed to complete 25 LogIn operations. Zheng
et al. [12] and Jha et al. [13] discussed about the hybrid approach
in the paper, which overcomes the drawbacks of both central-
ized and distributed approaches.

Sotomayor et al. [6] discussed a well-known algorithm
known as round robin (RR) with the least connection. In this
technique, the request is forwarded to the node having the
least number of connections. At some point in time, some
nodes may be heavily loaded, and others remain idle. Rado-
jević and Žagar [14] suggested an improved version of RR
known as the Central Load-Balancing Decision Model. In
this technique, the connection time between the client and
the node is calculated, and if it exceeds the threshold, it dis-
connects the connection and forwards the request to a further
node using the RR approach.

Blum [15] discussed about a load-balancing technique called
ant colony optimization. In this approach, once the request is
generated, the ant and the pheromone move in the forward
direction from an overloaded node in search of an under-
loaded node. After locating an underloaded node, it continues
its search further to the next overloaded node and it back-
tracks to the last underloaded node. The research paper of
Wang et al. [16] suggests a dynamic load-balancing algorithm
called load-balancing min–min (LBMM) based on a three-
level hierarchy. LBMM uses an opportunistic load-balancing
algorithm, which ensures each node is busy in the cloud with-
out considering the execution time of the node, which causes a
bottleneck in the system. Singh et al. [17] In the autonomous
agent-based load-balancing algorithm (A2LB) for load redis-
tribution in an overloaded VM [17].

2 Wireless Communications and Mobile Computing

Some parameters are observed here as follows:

(i) The data are segregated into the cloud.
(ii) The machines are virtually connected to data.
(iii) Fitness methodologies are used to load the data.
(iv) The request is used to fetch the data from the cloud.
(v) The load will be allocated from the table of a VM. If

it is overloaded with data, the VM investigates an
alternate process of cloud segregation.

(vi) Once this process is completed, the passage agent
sent an acknowledgment to the allocation table.

These are the few observations in the existing algorithm
as follows:

(1) A cloud architecture by Jinhua et al. [18] shows the
presence of multiple data centers with thousands of
nodes inside them. Each node will have multiple
numbers of VMs [18]. Cherkasova et al. [19] stated
that since each VM information is stored in the vir-
tual_machine_load fitness table in the A2LB approach,
the size of the table will be extremely large. So, the load
agent will take more time to scan this table [19].

(2) No policywasmentioned for diverting the load request
coming into the data center. Since a cloud provider will
have multiple data centers, the policy used for sending
the load request to different data centers is not men-
tioned. The cloud Infrastructure designed by a cloud
provider consists of multiple clusters and multiple
zones within a cluster spread across the world. The
log file of VMs maintained in the cloud infrastructure
bottleneck the performance of the cloud systems as
the log fie size increases.

(3) Sotomayor et al. [20] stated that this algorithm checks
the status of a VM and, if the VM has enough space to
accommodate the incoming request, passes the request
to the VM. But in the actual scenario, especially in the
IaaS platform, instead of checking the status of the
VM, it is better to check the status of the node and,
if the node is free or in the normal state, pass the
request to the node.

(4) Alqahtani et al. [21] stated that the load-balancing
algorithm focuses on the time-based resource alloca-
tion of nodes, which can effectively perform the oper-
ation and execution in a timely manner. This paper
focuses on the failure rate calculation, but this module
is required to support the higher level of the virtuali-
zation process. Calculating the failure rate is a difficult
process for the virtualization of software allocation
[21].

(5) Nasr et al. [22] stated that cloud let simulating algo-
rithm followed the two different strategies for the vir-
tualization of the scheduling algorithm. In this paper,
more focus is on running time and reduce the com-
plexity of using the hybrid approach [22]. Our pro-
posed model utilized our time-consuming process and
increased the resource utilization.

3. Proposed Method

Cloud provides three basic services named Software as a
Service (SaaS), Platform as a Service (PaaS), and Infrastruc-
ture as a Service (IaaS). In IaaS, the resources such as CPU,
memory, disk space, etc. can be availed to the requesting
client in the form of a service. Cherkasova et al. [19] pro-
posed the A2LB algorithm that was redesigned to work effec-
tively in the IaaS platform. The hybrid model has become a
prominent player in the constantly changing field of cloud
computing, providing enterprises with the greatest features
of both on-premises infrastructure—security and control—
and public cloud computing—scalability and agility. Getting
the proper balance: The demands and priorities of businesses
vary. Private clouds may be necessary for sensitive data due
to their strict control, while public clouds are ideal for work-
loads that fluctuate and offer more flexibility. You may cus-
tomize your cloud infrastructure using a hybrid to meet
certain requirements. While new projects take use of the flex-
ibility of the public cloud, legacy applications might remain
on-premises for security reasons. This equilibriummaximizes
cost-effectiveness, security, and performance. Scalability on
demand: Rapid scaling is a strength of public clouds, making
them ideal for workload fluctuations. There is a price for this
freedom, though. By using a hybrid strategy, you may address
demand surges by scaling up and down in the public cloud
during peak hours without going over budget for permanent
resources. You may retain cost efficiency by reducing the
amount of your on-premises infrastructure after things settle
down. Data residency and compliance: Data must comply
with certain standards and remain inside certain geographic
limits. Utilizing the public cloud for nonessential functions
while maintaining sensitive data on-premises for compliance
is possible with a hybrid cloud. This maintains regulatory
compliance while maintaining cloud computing’s advantages.
Preventing vendor lock-in: Although public cloud providers
provide appealing benefits, depending toomuch on onemight
restrict your freedom and alternatives [23, 24]. You remain
openwith hybrid cloud. For certain purposes, youmay choose
a variety of public cloud providers, preventing lock-in and
guaranteeing that you receive the finest services available for
each activity. Encouraging Innovation: The hybrid paradigm
dismantles boundaries between public cloud and on-premises
systems [25]. Collaboration and creativity are facilitated by
connecting data and applications between the two. Resources
are readily available to developers, encouraging more rapid
experimentation and agile development. Businesses may cre-
ate a custom cloud architecture that optimizes security, agil-
ity, and compliance with the help of the hybrid approach,
which goes beyond just balancing prices and performance.
It has nothing to do with staying off-site or avoiding public
clouds. It is important to select the appropriate tool for the
job, and the hybrid approach gives you the freedom to do so.
Recall that there is no one-size-fits-all explanation for the
significance of the hybrid approach. Every firm has certain
requirements and limitations. But, by being aware of the
hybrid model’s main advantages, you may decide on your
cloud approach and take use of its advantages to meet your

Wireless Communications and Mobile Computing 3

company’s objectives. The cloud provider depicted in Figure 1
may have several data centers spread across several geographic
regions, each referred to as a zone. A zone consists of several
nodes gathered. IaaS creates virtual instances in nodes and
sends them to clients based on requests from clients. Multiple
virtual instances can exist within a single node. A single Ama-
zon EC2 t2.nano instance, for instance, offers 0.5 GiB of RAM,
one virtual CPU, and secondary storage using Amazon EBS.

A hybrid approach for load balancing is applied in the
proposed work. Table 1 shows the structure of a zone resource.
Z_Id stands for zone id, Nd_Id stands for node id, π stands for
total CPU capacity, µ stands for total memory capacity, and Ω

for the total storage capacity of a node in each zone. Table 2
describes the zone-level resource utilization. α indicates the
amount of CPU used in a node, β stands for storage used in
a node, ∞ stands for memory used in a node, v represents the
fitness value of a node, and s represents the load status of the
node. Table 3 keeps the records of the VMs available in a node
of a specific zone. Tables 1–3 are stored in a distributive
manner in each zone.

Relocation
agent

Cargo
agent CT CTCTRR

LI CT

Start
Relocation

agent

Allotment
agent 1

Zone-1

N1

Vm1

N3

Cargo
agent ER

Node cargo 1

End

N/F

N2

Vm1Vm2 Vm1 Vm2 Vm3

LI CT

Allotment
agent 2

Zone-2

N1

Vm1

N3

Node cargo 2

N/F

N2

Vm2 Vm1 Vm2 Vm3

FIGURE 1: Flow of process for multiple data centers.

TABLE 1: Zone resource table.

Z_Id Nd_Id Π µ Ω

TABLE 2: Zone utilization table.

Z_Id Nd_Id α β ∞ V S

TABLE 3: VM cargo table.

Z_Id Nd_Id V_Id

4 Wireless Communications and Mobile Computing

class VirtualMachine:

def __init__(self, vm_id, capacity):

self.vm_id= vm_id

self.capacity= capacity

self.current_workload= 0

def assign_task(self, task):

self.current_workload+= task

def get_utilization(self):

return self.current_workload/self.capacity

class LoadBalancer:

def __init__(self, vms):

self.vms= vms

def balance_load(self, task):

Simple load balancing: Assign the task to the VM with the lowest current workload

target_vm=min(self.vms, key= lambda vm: vm.current_workload)

target_vm.assign_task (task)

def print_utilization(self):

for vm in self.vms:

print (f“VM {vm.vm_id} Utilization: {vm.get_utilization()}”)

Example usage

if __name__== “__main__”:

Create virtual machines

vm1=VirtualMachine (vm_id= 1, capacity= 120)

vm2=VirtualMachine (vm_id= 2, capacity= 170)

vm3=VirtualMachine (vm_id= 3, capacity= 130)

vms= [vm1, vm2, vm3]

Create a load balancer

load_balancer= LoadBalancer (vms)

Simulate tasks and load balancing

tasks= [30, 40, 15, 25, 10]

for task in tasks:

load_balancer.balance_load (task)

Print VM utilizations

load_balancer.print_utilization()

Level 1 of Cargo process

Select: Accept the user’s request.

Results: Distribute resources using a sophisticated algorithm

Case1:

Call Allotment_agent (Cargo info) and Master_Commit_Agent (Cargo info) for each node in Table 4 with status= “Empty.”

Case 2:

For every node N_Node with Status= “Normal” in Table 2,

{

If (N_Node.Availablememory-requested_memory >25%)∼{ Call Allotment_agent() Call Master_Commit_Agent() }

Case 3:

If (no node with the statuses “Free” or “Normal” is accessible in Table 2)

Call Passage_Agent();

Level 2 Allotment Process

(i) Update Tables 2 and 3 and create a VM in the chosen node with the needed cargo information.

(ii) Using the information in the Node Resource Table, compute the modified node’s fitness value.

µtotal= µavailable [from Node_Resource_Table]–µused [According to Table 2]

v%= µavailable/µtotal× 100

if (v >75%)

Wireless Communications and Mobile Computing 5

This algorithm followed certain procedures to execute
the process of load-balancing and a hybrid-based approach,
sharing the resource information with the help of virtualiza-
tion to store the data. This initial process started with the
request received (RR) from the client, which has been taken
into consideration of cargo agent 1 and moved forward to the
node cargo 1 module. The node cargo module depends on
the look-into (LI) process, which has been redirected into
allotment agent 1; this agent receives input through the nor-
mal process (N). Those agents depend upon the zone-level
segregation to store the resource data with the help of multi-
ple virtualizations. For executing this process, the connecting
interface of nodes is required to direct into the VM. In this
execution three different node (N1, N2, N3) utilized for VM
(Vm1, Vm2, Vm3). Once this storage process is completed
or full of required space, it will be redirected into the parallel
components of Zone-2. The Parallel activities looking for the
Relocation agent with the help of critical thinking (CT),
which will be working on the concepts of reallocation of
resource storage. Once the request is completed on the vir-
tual storage, it will share the response as well as if we want

to delete the stored information with the help of free
execution (F). From the above diagram Figure 1 considers
into parallel agents of Zone 1 and Zone 2 for storing and
retrieving the component of the hybrid approach with the
help of load-balancing execution. The final module of end
request (ER) will terminate the process agent request-based
response.

Table 4 stores the fitness value, load status, and resource
consumption statistics for each zone, including CPU, mem-
ory, and storage. Table 5 contains the resource data, includ-
ing total CPU, total RAM, and total disk storage for each
zone. Tables 4 and 5 are kept up to date in a single area
within the cloud provider space.

4. Proposed Algorithm

Five functions make up the suggested algorithm (Algorithm 1)
Cargo Agent, Allotment Agent, Passage Agent, Master Commit
Agent, and Relocation Agent. In every zone, Cargo Agent
receives the request from the client. When the Cargo Agent
has reviewed the zone’s condition, he or she can call the

{

Allotment_status=Empty

}

Otherwise, if (Allotment_status >25%)
{

Allotment_status=Normal

}

Otherwise, Allotment_status= critical

Refresh Tables 2 and 3.

Agent for travel ()

{

Provide: Get the container agency

To obtain the Non-Critical DC, initiate the Relocation agent.

Please forward the request to DC.

}

Relocation process()

{

Scan Table 4

Select the DC that is least loaded and give the Passage agent back the DCID.

} //sample can be shown in Figure 5.

Cargo Information: Master_Commit Agent

{

Add the information of the cargo to Table 4.

Determine the Zone’s fitness value by using the information shown in Table outlined below:

From the Prime DC Resource Table, µavailable= µtotal. Used from the Prime DC Cargo Table

v% is equal to available divided by total times 100.

The allocation status is empty if (v >75%)
If (Allotment_status >25%), then } Else

The allocation status is Normal.

Otherwise, allocation_status= critical

Make Table 4 updates

ALGORITHM 1: Algorithm for VM.

6 Wireless Communications and Mobile Computing

Allotment Agent to assign the request to the Cargo Agent in that
zone or the Relocation Agents to transmit it to the Cargo Agents
in other zones. The mathematical problem illustrating the load-
balancing usage processes is displayed below, and their result
illustration can be shown in Figures 2–7.

The output of the suggested algorithm is displayed in
Table 6. The calculation of response time under normal
and critical situations involves assuming that there are four
data centers, each with a distinct number of nodes. The

TABLE 4: Node cargo table.

Z_Id CPU_Used Memory used (µ) Disk used Fitness value (ν) Status

TABLE 5: Primary DC resource table.

Z_Id Tot_CPU Tot_Mem Tot_Disk

Th
ou

sa
nd

s

30
25
20
15
10

5
0

0 0.5 1 1.5 2
DC_No

“No. of nodes,” “Distance (km)” by “DC_No”

2.5 3 3.5 4 4.5

No. of nodes
Distance (km)

FIGURE 2: Distance measurements using nodes.

Cr
iti

ca
l (

ns
)

120
100

80
60
40
20

0
0 10 20 30 40

Migration time (ns)

Field: migration time (ns) and field: critical (ns)
appear highly correlated

50 60 70 80 90

FIGURE 3: Cargo process of migration time.

30 30
25 25
20 20
15 15
10 10

5 5
0

1 2
DC_No

“No. of nodes,” “Normal (ns)” by “DC_No”

3 4
0

N
o.

 o
f n

od
es

N
or

m
al

 (n
s)

Th
ou

sa
nd

s

Normal (ns)
No. of nodes

FIGURE 4: Allotment process of normal time.

250 250

200 200

150 150

100 100

50 50

0
0 26

Migration time (ns)
54 82

0

To
ta

l n
o.

 o
f V

M
Th

ou
sa

nd
s

Search time
Normal res. time (ns)

Total no. of VM

FIGURE 5: Search time for relocation process.

30 120
25 100
20 80
15 60
10 40

5 20
0

1 2
DC_No

3 4
0

Th
ou

sa
nd

s

Search time
Migration time (ns)
Critical (ns)

Normal (ns)
No. of nodes
Distance (km)

FIGURE 6: Performance analysis of the algorithm.

300 20
250

15
200

10150

5
100

50
0

200,000 150,000
Total no. of VM

Multiple values by “Total no. of VM”

100,000 50,000
0

Th
ou

sa
nd

s
Su

m
 o

f d
ist

an
ce

 (k
m

)

Sum of search time (ns)
Sum of migration time (ns)
Sum of critical res. time (ns)
Normal res. time (ns)
Sum of distance (km)

FIGURE 7: Comparison of various approaches.

Wireless Communications and Mobile Computing 7

outcome of the existing method, which takes VM count into
account rather than node count, is displayed in Table 7. A
notable improvement in reaction time was seen in the new
strategy, as demonstrated by the graphs in Figures 2 and 3.
These figures were created using Tables 6 and 7.

5. Conclusion

The focus of the paper was to identify the challenges in the
existing algorithm A2LB for the load distribution in the IaaS
platform and refine it further to improve the performance.
The proposed A2LB algorithm provides a better-clustered
approach to resource utilization among user nodes and allo-
cated memory space with an accurate load value. The virtual
components also adhered to the various criteria for node
point connection between the primary and secondary agents.
It improves the optimization of CPU and memory usage
while also reducing disc resource utilization. The scope of
this work may be expanded in the future to include the metric
parameter calculation of load-balancing in the SaaS platform.

Data Availability

The data used to support the findings of this study are available
from the first author upon request (shoneyks@gmail.com).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

We thank theDeanship of Scientific Research, Prince SattamBin
Abdulaziz University, Alkharj, Saudi Arabia, for help and sup-
port. This study is supported via funding fromPrince SattamBin
Abdulaziz University project number (PSAU/2024/R/1445).

References

[1] M. Armbrust, A. Fox, R. Griffith et al., “Above the clouds: a
berkeley view of cloud computing,” University of California at
Berkeley Technical, Tech. Rep. No. UCB/EECS-2009-28, 2009.

[2] M. Y. Uddin and S. Ahmad, “A review on edge to cloud:
paradigm shift from large data centers to small centers of data
everywhere,” in 2020 International Conference on Inventive
Computation Technologies (ICICT), pp. 318–322, IEEE, Coim-
batore, India, February 2020.

[3] R. L. Grossman, “The case for cloud computing,” IT Professional,
vol. 11, no. 2, pp. 23–27, 2009.

[4] Y. C. Lee and A. Y. Zomaya, “Energy efficient utilization of
resources in cloud computing systems,” The Journal of
Supercomputing, vol. 60, pp. 268–280, 2012.

[5] M. R. Aliabadi and M. R. Ahmadi, “Proposing a comprehen-
sive storage virtualization architecture with related verification
for data center application,” Advanced in Information Sciences
and Service Sciences, vol. 2, no. 3, pp. 68–75, 2010.

[6] B. Sotomayor, K. Keahey, I. Foster, and T. Freeman, “Enabling
cost-effective resource leases with virtual machines,” in In Hot
Topics Session in ACM/IEEE International Symposium on High
Performance Distributed Computing, (HPDC 2007), 2007.

[7] A. Azeez, Auto-Scaling Axis2 Web Services on Amazon EC2,
Apachecon Europe, Amsterdam, 2009.

[8] Y.-C. Chow and Kohler, “Models for dynamic load balancing in
a heterogeneousmultiple processor system,” IEEE Transactions
on Computers, vol. C-28, no. 5, pp. 354–361, 1979.

[9] L. M. Ni and K. Hwang, “Optimal load balancing in a multiple
processor system with many job classes,” IEEE Transactions on
Software Engineering, vol. SE-11, no. 5, pp. 491–496, 1985.

[10] A. Corradi, L. Leonardi, and F. Zambonelli, “Diffusive load-
balancing policies for dynamic applications,” IEEE Concur-
rency, vol. 7, no. 1, pp. 22–31, 1999.

[11] L. V. Kale, “Comparing the performance of two dynamic load
distribution,” Proceedings of the International Conference on
Parallel Processing, vol. 1, pp. 8–12, 1988.

[12] G. Zheng, A. Bhatelé, E. Meneses, and L. V. Kalé, “Hierarchical
load balancing for large scale supercomputers,” in Third
International Workshop on Parallel Programming Models and
Systems Software for High-End Computing (P2S2), pp. 436–444,
IEEE, San Diego, CA, USA, September 2010.

[13] S. Jha, A. Sultan, M. Alharbi, B. Alouffi, and S. Sebastian,
“Secured and provisioned access authentication using sub-
scribed user identity in federated clouds,” International Journal
of Advanced Computer Science and Applications, vol. 12, no. 11,
2021.

[14] B. Radojević and M. Žagar, “Analysis of issues with load
balancing algorithms in hosted (cloud) environments,” in 2011

TABLE 6: Recommended algorithm.

DC_No No. of nodes Search time Distance (km) Migration time (ns) Critical (ns) Normal (ns)

1 20,000 22 0 0 0 22
2 12,000 13 5,000 26 39 13
3 20,000 22 10,000 54 76 22
4 25,000 27 15,000 82 109 27

TABLE 7: Compared algorithm.

DC_No Total no. of VM Search time (ns) Distance (km) Migration time (ns) Critical res. time (ns) Normal res. time (ns)

1 100,000 111.11 0 0 0 111.11
2 50,000 55.5 5,000 26 81.5 55.5
3 200,000 222.22 10,000 54 276.2 222.22
4 150,000 167 15,000 82 249 167

8 Wireless Communications and Mobile Computing

Proceedings of the 34th International Convention MIPRO,
pp. 416–420, IEEE, Opatija, Croatia, May 2011.

[15] C. Blum, “Ant colony optimization: introduction and recent
trends,” Physics of Life Reviews, vol. 2, no. 4, pp. 353–373, 2005.

[16] S.-C. Wang, K.-Q. Yan, W.-P. Liao, and S.-S. Wang, “Towards
a load balancing in a three-level cloud computing network,” in
2010 3rd International Conference on Computer Science and
Information Technology, pp. 108–113, IEEE, Chengdu, July
2010.

[17] A. Singh, D. Juneja, and M. Malhotra, “Autonomous agent
based load balancing algorithm in cloud computing,” Procedia
Computer Science, vol. 45, pp. 832–841, 2015.

[18] H. Jinhua, G. Jianhua, G. Sun, and T. Zhao, “A scheduling
strategy on Load balancing of virtual machine resources in cloud
computing environment,” in 2010 3rd International Symposium
on Parallel Architectures, Algorithms and Programming, pp. 89–
96, IEEE, Liaoning, China, December 2010.

[19] L. Cherkasova, D. Gupta, and A. Vahdat, “When virtual is
harder than real: resource allocation challenges in virtual
machine based it environments,” Tech. Rep. HPL-25, 2007.

[20] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster,
“Virtual Infrastructure management in private and hybrid
clouds,” IEEE Internet Computing, vol. 13, no. 5, pp. 14–22,
2009.

[21] F. Alqahtani, M. Amoon, and A. A. Nasr, “Reliable scheduling
and load balancing for requests in cloud-fog computing,” Peer-
to-Peer Networking and Applications, vol. 14, pp. 1905–1916,
2021.

[22] A. A. Nasr, N. A. El-Bahnasawy, G. Attiya, and A. El-Sayed,
“Cloudlet scheduling based load balancing on virtual machines in
cloud computing environment,” Journal of Internet Technology,
vol. 20, no. 5, pp. 1371–1378, 2019.

[23] M. Iyyappan, A. Kumar, S. Ahmad, S. Jha, B. Alouffi, and
A. Alharbi, “A component selection framework of cohesion and
coupling metrics,” Computer Systems Science and Engineering,
vol. 44, no. 1, pp. 351–365, 2023.

[24] Iyyappan M, S. Ahmad, S. Jha, A. Alam, M. Yaseen, and
H. A. M. Abdeljaber, “A novel ai-based stock market prediction
using machine learning algorithm,” Scientific Programming,
vol. 2022, Article ID 4808088, 11 pages, 2022.

[25] A. S. Zamani, M. M. Akhtar, and S. Ahmad, “Emerging cloud
computing paradigm,” International Journal of Computer Science
Issues, vol. 8, no. 4, Article ID 304, 2011.

Wireless Communications and Mobile Computing 9

