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Massive multiple-input-multiple-output (M-MIMO) offers remarkable advantages in terms of spectral, energy, and hardware
efficiency for future wireless systems. However, its performance relies on the accuracy of channel state information (CSI) available
at the transceivers. This makes channel estimation pivotal in the context of M-MIMO systems. Prior research has focused on
evaluating channel estimation methods under the assumption of spatially uncorrelated fading channel models. In this study, we
evaluate the performance of the minimum-mean-square-error (MMSE) estimator in terms of the normalized mean square error
(NMSE) in the uplink of M-MIMO systems over spatially correlated Rician fading. The NMSE allows for easy comparison of
different M-MIMO configurations, serving as a relative performance indicator. Besides, it is an advantageous metric due to its
normalization, scale invariance, and consistent performance indication across diverse scenarios. In the system model, we assume
imperfections in channel estimation and that the random angles in the correlation model follow a Gaussian distribution. For this
scenario, we derive an accurate closed-form expression for calculating the NMSE, which is validated via Monte-Carlo simulations.
Our numerical results reveal that as the Rician K-factor decreases, approaching Rayleigh fading conditions, the NMSE improves.
Additionally, spatial correlation and a reduction in the antenna array interelement spacing lead to a reduction in NMSE, further
enhancing the overall system performance.

1. Introduction

Massive multiple-input multiple-output (M-MIMO) technol-
ogies are pivotal for the evolution and deployment of fifth-
generation (5G) and beyond-5G (B5G) wireless networks,
as highlighted by recent research [1]. Specifically, M-MIMO
enhances the reliability, security, and data transmission
rates within wireless systems through the implementation
of straightforward receiver processing techniques, as dem-
onstrated in several relevant studies [2–6]. The concept of
MIMO entails the integration of multiple antennas in both
the transmission and reception elements of a wireless sys-
tem. More specifically, M-MIMO characterizes a scenario
where the base station (BS) boasts a substantially larger

quantity of antennas in comparison to the number of user
equipments (UEs) within the wireless system [7–9].

In wireless communication, the received signals undergo
random attenuation when traversing the channel, a phenom-
enon known as fading, often attributed to the multiple-path
propagation of transmitted signals [10, 11]. To capture the
fading behavior, various statistical distributions have been
proposed in the literature. One common alternative is the
Rayleigh distribution, widely favored for its ability to emulate
fading in non-line-of-sight (NLOS) multipath environments
[12–14]. However, in line-of-sight (LOS) scenarios, alterna-
tive statistical distributions have been proposed. The Rician
distribution stands out as a prominent choice for such envir-
onments, with the Rayleigh distribution considered a specific
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case of the Rician distribution [15]. From a comprehensive
literature review, it is evident that the performance of M-
MIMO systems over Rician fading channels remains signifi-
cantly less explored in comparison to Rayleigh fading scenar-
ios. Moreover, within this less-explored domain, scenarios
involving channel correlation in Rician fading channels
xhave received even less attention despite their practical
relevance [16–20].

Among the manifold advantages offered by M-MIMO
technology, spatial diversity emerges as a pivotal feature that
significantly enhances wireless system performance. However,
harnessing this diversity hinges on the precise knowledge of
channel state information (CSI) at the transceivers [21]. Con-
sequently, the fading channel necessitates estimation through
various approaches, including techniques such as maximum-
likelihood (ML) estimation and minimum-mean-square-error
(MMSE) estimation. Both strategies rely on a set of pilot sym-
bols known to the receiver, a common practice elucidated in
existing literature [3]. In particular, theMMSE estimator, often
referred to as the linear MMSE (LMMSE) estimator, serves to
minimize the Bayesian mean square error (MSE) between the
actual and the estimated channel elements [22].

The presence of spatial correlation in fading, often influ-
enced by the propagation environment or the geometry of
the antenna array, introduces a level of coherence with prac-
tical scenarios in the way that fading affects signals arriving
at different antennas [23]. This spatial correlation, although
it may impact the diversity of M-MIMO systems, also holds
the potential for advantageous outcomes when considering
the pilot sequences employed for channel estimation. More
specifically, the phenomenon of pilot contamination can be
mitigated in such scenarios, as the orthogonality between pilot
sequences is preserved to a greater extent compared to sce-
narios with no spatial correlation, where interference suppres-
sion becomes more challenging [24]. It is important to note
that some research efforts have assumed a scenario where
statistical independence exists between the fading processes
affecting signals received at different antennas in the array,
which, in practical terms, is not a realistic depiction of many
real-world settings [16, 17].

In [25], a novel approach for inducing spatial correlation
within the fading channel, which has a profound impact on
the performance of M-MIMO systems, is introduced. This
work delves into a comprehensive analysis of the spectral
efficiency (SE), energy efficiency (EE), and hardware effi-
ciency (HE) across various channel estimation strategies,
all within the context of the system operating over correlated
Rayleigh fading channels. Specifically, the study explores the
performance of three prominent channel estimation meth-
ods: the MMSE, the element-wise MMSE (EW-MMSE), and
the least-square (LS) estimators. In this context, the signifi-
cance of channel spatial correlation takes center stage, partic-
ularly when dealing with the sizable antenna arrays typically
encountered in M-MIMO systems. Thus, large arrays offer an
impressive spatial resolution relative to the number of scat-
tering clusters, making spatial correlation a pivotal factor in
system performance.

Looking ahead, the future landscape of mobile cellular
networks is poised to witness an increased proliferation of
small cells in their deployment. These small cells are frequently
positioned at lower elevations, such as lampposts, utility poles,
and building rooftops. This strategic placement minimizes
obstructions between the transmitting and receiving ends,
consequently elevating the likelihood of establishing a direct
LOS communication path. In these evolving scenarios, the
traditional Rayleigh distribution, often used to model fading
behavior, may not be the most suitable choice. Instead, alter-
native statistical distributions, such as the Rician fading
model, prove to be more apt. They can provide invaluable
insights for designers of M-MIMO systems, particularly in
environments where LOS paths play a significant role in com-
munication reliability and performance optimization.

In [26], a closed-form expression for SE is derived, taking
into account a correlated Rician fading channel characterized
by variations in the angles of arrival to the UEs, as perceived
from the BS. This research demonstrates that, within M-
MIMO systems, the sum-SE reaches its maximum when the
number of antennas remains fixed. This line of investigation is
extended in [27], where the performance of the LS andMMSE
channel estimation methods are evaluated. This analysis
focuses on the average mean squared error (AMSE) for M-
MIMO systems, specifically considering uncorrelated Rician
fading channels. Closed-form expressions for both the mean
and variance of the AMSE are provided in this research. Fur-
thermore, in their subsequent work [28], the authors delve
into the realm of M-MIMO systems for internet-of-things
(IoT) applications, particularly over uncorrelated Rician fad-
ing conditions. Here, they derive approximations for the
expectation of the relative channel estimation error (RCEE)
between IoT devices and the BS for both LS and MMSE esti-
mation methods. Expanding upon this, in yet another publi-
cation [29], the authors explore the RCEE in the context ofM-
MIMO systems operating over uncorrelated Rician fading
channels. In this scenario, the authors provide closed-form
expressions for the probability density function (PDF) and
cumulative distribution function (CDF) of RCEE. Notably,
it is worth mentioning that none of these aforementioned
studies consider the effects of imperfect channel estimation
(ICE), leaving this aspect as a potential avenue for further
research.

In [30, 31], the authors focus on a multicell M-MIMO
system operating over spatially correlated Rician fading
channels. These investigations delve into the statistical char-
acteristics of three channel estimation methods: the MMSE,
EW-MMSE, and LS techniques. They provide closed-form
expressions to evaluate the SE. In a similar vein, in [32], it is
considered a scenario involving cell-free M-MIMO, where
spatial correlation in Rician fading channels is also taken
into account. Notably, all these studies determine that the
MMSE estimator consistently delivers the highest level of
performance across various settings. Shifting the focus to
the downlink (DL) transmission in a single-cell MIMO sys-
tem over correlated Rician fading channels, in [33], the
authors leverage the one-ring scattering model to replicate
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the correlation effects in the transmission. This work also
yields straightforward closed-form approximations for the
ergodic rate.

Through a comprehensive review of existing literature,
it has been identified a gap concerning the evaluation of
the normalized mean square error (NMSE) [34] in MMSE
estimation for M-MIMO systems operating over spatially
correlated Rician fading channels. To the best of the authors’
knowledge, no prior studies have specifically assessed the
performance of the MMSE estimator in this context using
the NMSE metric. This novel exploration is interesting for
several reasons. First, NMSE acts as a pivotal relative perfor-
mance indicator, facilitating straightforward comparisons
among diverse M-MIMO configurations. Moreover, the analy-
sis of NMSE offers advantages attributable to its normalization,
scale invariance, provision of relative performance indications,
and consistency across various scenarios. Furthermore, delving
into the NMSE evaluation in the context of M-MIMO over
Rician fading channels provides valuable insights into system
behavior in realistic communication environments. This is
because the Rician fading model, encompassing both LOS
and multipath components, is pivotal for capturing the intri-
cacies of different practical wireless transmission scenarios.

By the above, the performance of the uplink (UL) of a
single-cell M-MIMO system over spatially correlated Rician
fading is evaluated in this work in terms of the NMSE.
Assuming that the random angles in the correlation model
follow a Gaussian distribution and that ICE is performed at
the receiver, an accurate closed-form expression to evaluate
the NMSE of the MMSE channel estimator is derived, which
is validated through Monte-Carlo simulations in different
operating scenarios. Useful insights about the M-MIMO sys-
tem performance are obtained from these results. The main
contributions and findings of this work are summarized as
follows:

(i) A precise closed-form expression for the calcula-
tion of the NMSE is derived. To validate the accu-
racy of this expression, extensive Monte-Carlo
simulations are conducted across various represen-
tative scenarios.

(ii) Our findings underscore a noteworthy trend: as
the Rician K-factor diminishes, converging toward
Rayleigh fading conditions, there is a discernible
enhancement in NMSE. This improvement directly
translates into an elevated system performance.

(iii) Our study also unveils the impact of spatial corre-
lation and a reduction in antenna array interele-
ment spacing on NMSE. Intriguingly, it is observed
that these factors contribute to a reduction in NMSE,
thereby improving the overall performance of the
system.

These nuanced insights, supported by both analytical
derivations and simulation results, offer interesting perspec-
tives for the design and optimization of M-MIMO systems
operating over spatially correlated Rician fading channels.

The remainder of this work is organized as follows. Section 2
presents the systemmodel and the procedure employed to gen-
erate spatially correlated fading channels. An expression to eval-
uate the NMSE for the MMSE channel estimator considering
correlated Rician fading channels is derived in Section 3.
Section 4 presents numerical results and discussions for some
representative scenarios. Finally, Section 5 summarizes the
main conclusions of this work.

Tables 1 and 2 provide a comprehensive list of abbrevia-
tions and notations utilized throughout this work, respectively.

2. System Model

Let us delve into the UL of a single-cell M-MIMO system. In
this configuration, a BS is equipped with a uniform linear
array (ULA) with M antennas, serving a group of K UEs,
each equipped with a single antenna. These UEs are evenly
distributed throughout the cell area. Considering this system
model, this section presents a framework related to the
received signals, along with pertinent details regarding the
channel model.

TABLE 1: Acronyms and abbreviations.

Abbreviation Full form

5G Fifth-generation
AMSE Average mean squared error
AoA Angle of arrival
AWGN Additive white Gaussian noise
B5G Beyond-5G
BS Base station
CSI Channel state information
CDF Cumulative distribution function
DL Downlink
EE Energy efficiency
EW-MMSE Element-wise minimum-mean-square-error
HE Hardware efficiency
ICE Imperfect channel estimation
IoT Internet-of-things
i.i.d. Independent and identically distributed
LMMSE Linear minimum-mean-square-error
LOS Line-of-sight
LS Least-square
MMSE Minimum-mean-square-error
M-MIMO Massive multiple-input multiple-output
MSE Mean square error
ML Maximum-likelihood
NLOS Non-line-of-sight
NMSE Normalized mean square error
PDF Probability density function
RCEE Relative channel estimation error
SE Spectral efficiency
SNR Signal-to-noise ratio
UE User equipment
ULA Uniform linear array
UL Uplink
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2.1. Matrix Structure of the Received Signals. After a coherent
detection stage (phase compensation) at the receiver, the
vector of received samples, y, can be written as the following
column vector with M entries

y ¼ ffiffiffi
P

p
H̄ x þ n; ð1Þ

where

H̄ ¼ R
1
2H: ð2Þ

In Equations (1) and (2), P denotes the received power,
the spatial correlation matrix R, with dimensions M ×M,
characterizes the overall propagation effects in terms of
antenna gains, as well as the radiation patterns at both the
transmitter and receiver. Moreover, R introduces the local
dispersion over different angles. In particular, Gaussian, Lapla-
cian, or uniform distributions can be assumed for generating
these random angles [25]. In addition, x is a column vector
whose entries are the symbols transmitted by the K UEs, H is
the channel matrix with dimensions M ×K , containing the
small-scale fading, and it can be written as

H¼

h1;1 h1;2 ⋯ h1;K

h2;1 h2;2 ⋯ h2;K

⋮ ⋮ ⋱ ⋮
hM;1 hM;2 ⋯ hM;K

2
66664

3
77775: ð3Þ

More details about the channel matrix and the spatial corre-
lation matrix are given in the following subsection. Finally, in
Equation (1), n¼ ½n1; n2; …; nM�T is a column vector whose
M entries are independent and identically distributed (i.i.d.)
additive white Gaussian noise (AWGN) samples, such that
nm ∼CNð0; σ2nÞ :; 8m.

2.2. Channel Model.Consider a Rician fading channel matrix,H,
whose ðm; kÞ :th entry is given by Cho et al. [11], Equation (3.52)

hm;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kk

Kk þ 1

r
ϱm;k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Kk þ 1

r
ρm;k; ð4Þ

whereKk is the Rician factor for the kth UE, which is defined
by the ratio between the power of the LOS component and the
power of the NLOS components [11]. In addition, ϱm;k repre-
sents the LOS or specular components given by

ϱm;k ¼ exp −
j2πd m − 1ð Þsinθk

λ

� �
;  8m; k; ð5Þ

where λ is the transmitted carrier wavelength, d denotes the
normalized separation between antennas, and θk is the kth
UE angle of arrival (AoA), which can be modeled as a uni-
formly distributed random variable into the interval ½−π=2;
π=2) [17], Equation (3). Finally, in Equation (4), ρm;k repre-
sents the NLOS components, such that,

ρm;k ¼ gm;k;1 þ jgm;k;2; ð6Þ

where gm;k;i;∼Nð0; σ2k=2Þ :; for i¼ 1; 2 and 8m; k.

TABLE 2: Symbols and notation.

Notation Description

x Scalar (lowercase letters)
x Vector (bold lowercase letters)
X Matrix (bold uppercase letters)
f ðxÞ: PDF of the random variable x
Ef⋅g: Expectation
covf⋅g: Covariance
ð⋅ÞT Transpose
ð⋅ÞH Hermitian transpose
j⋅j: Determinant
k⋅jj2 Euclidean norm
trð⋅Þ : Trace of a matrix

Nðx; yÞ:

Circularly symmetric Gaussian random variable
(x: mean, y: variance)

CNðx; yÞ:

Circularly symmetric complex Gaussian random
variable (x: mean, y: variance)

Ix x× x identity matrix
0x x× 1 vector with zeros
1x x× 1 vector with ones
j Imaginary unit (

ffiffiffiffiffiffi
−1

p
)

d ULA interelement spacing
K Number of UEs in the M-MIMO system
M Number of antennas in the ULA
P Received power at the BS
n M × 1 noise vector
y M × 1 vector containing the received samples
R M ×M spatial correlation matrix

H
M ×K channel matrix containing the small-scale

fading

H̄
M ×K channel matrix containing correlated

entries
Ȳ Signal matrix used for channel estimation
ỹk M × 1 processed pilot signal vector for the kth UE
hm;k Channel gain for the mth antenna and the kth UE

ρm;k
NLOS component in the channel gain for the mth

antenna and the kth UE

ϱm;k
LOS specular component in the channel gain for

the mth antenna and the kth UE

σ2k

Variance of real Gaussian random variables in the
NLOS component of the channel gain for the kth

user
Kk Rician factor for the fading affecting the kth UE
θk AoA for the kth UE
φ̄n Angle of arriving of the planar wave at the ULA
λ Wavelength
γ SNR
Φ τ×K matrix containing K pilot sequences
Φk kth pilot sequence of length τ

Zþ Set of positive integer numbers
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Hereinafter, we consider a spatial correlationmatrixR char-
acterized by a Gaussian angular distribution [25], Section 2.6. In
this particular model, the assumption is made that each multi-
path component generates a planar wave arriving at the antenna
array from a distinct angle, as determined by

φ̄n ¼ φþ ζ; ð7Þ

where the nominal angle φ is deterministic, and ζ can be
assumed as an aleatory deviation from φ, such that its stan-
dard deviation is σφ, as shown in Figure 1. This model is
usually named as a local scattering model [35].

For a ULA, the entries of matrix R can be obtained as

rl;m ¼
Z 1

−1
exp j2πd sin φ̄nð Þ l −mð ÞÀ Á

f φ̄nð Þdφ̄n ; ð8Þ

for l¼ 1; 2;…;M and m¼ 1; 2;…;M, where d is the ULA
interelement spacing and f ðφ̄nÞ : is the PDF of φ̄n.

A practical use case for this system model could be in
urban or suburban environments where a BS with a ULA
serves multiple UEs. The even distribution of UEs in the cell
area serves as a practical starting point for network planners
in scenarios where an even coverage of cellular services is
desired across the coverage area. Besides, this assumption in
practical cellular network planning allows for a fair alloca-
tion of resources and enables the M-MIMO system to exploit
spatial diversity effectively. In addition, the ULA stands out
as a widely used and practical choice for antenna configura-
tions in cellular networks due to its simplicity, ease of

deployment, and compatibility with beamforming strategies
[36].

The relevance of the system model for a practical use case
can be further emphasized by considering the increasing
density of nearby BSs, elevating the probability of LOS con-
ditions between the UEs and the BS (This is due to the
increasing use of higher frequencies in mobile cellular net-
works. As an example, 5G utilizes the 3.5 GHz band for
initial deployments, resulting in a shorter coverage distance
by each cell site. Therefore, the deployment of a greater num-
ber of BSs is required along coverage areas.). In such scenar-
ios, the statistical Rician fading model aligns well with reality,
capturing the dominance of LOS components amid the grow-
ing number of BSs. Moreover, in urban or suburban environ-
ments characterized by numerous surrounding objects, the
choice of a Gaussian distribution for the local scattering
model is pertinent [25]. This complements the system model
by accounting for the multipath effects induced by the scat-
tering of signals due to the presence of diverse objects,
enhancing the model representation of complex propaga-
tion environments

3. NMSE Analysis for MMSE
Channel Estimation

An expression to calculate the NMSE for MMSE channel
estimation in M-MIMO systems over spatially correlated
Rician fading channels is derived in this section.

For the channel estimation process, the UE transmits
pilot sequences selected from the book, Φ, that is written
as a τ×K matrix given by

Angular interval with
standard deviation, σφ

M antennas

Nominal
angle, φ

M
ultipath com

ponent

Multipath component

Multipath component

Scattering cluster

UE

BS

FIGURE 1: Propagation under a local scattering model.
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Φ ¼ Φ1;Φ2;…;ΦK½ �

¼

ϕ1;1 ϕ1;2 ⋯ ϕ1;K

ϕ2;1 ϕ2;2 ⋯ ϕ2;K

⋮ ⋮ ⋱ ⋮
ϕτ;1 ϕτ;2 ⋯ ϕτ;K

2
66664

3
77775;

ð9Þ

where the K pilot sequences of length τ are mutually orthogo-
nal. Thus, a pilot sequence has a duration of τ symbol intervals.
The kth pilot sequence is denoted by Φk and each element of
this sequence satisfies that jϕt;kj : ¼ 1, for t¼ 1; 2;…; τ and k¼
1; 2;…;K , consequently, ΦHΦ¼ τIτ, and kΦjj22 ¼ τ.

The pilot sequence length τ is limited by the coherence
time, and this length should be greater or equal to K in order
to avoid pilot contamination in the single cell M-MIMO
system [31, 37]. Finally, the pilots’ book can be generated
by Walsh–Hadamard or discrete Fourier transform (DFT)
matrices of dimension τ¼ 2n, for n2Zþ [38, 39], or arbi-
trary dimensions [40], respectively.

Channel estimation through pilot signaling is the pri-
mary method for obtaining CSI. Hence, orthogonal pilot
sequences of all UEs are known by the BS [41, 42].

Combining Equations (1) and (9), we obtain the received
M × τ signal matrix utilized for channel estimation as follows

Ȳ ¼ ∑
K

k¼1

ffiffiffi
P

p
h̄kΦ

T
k þ N; ð10Þ

where h̄k denotes the kth column from the estimated channel
matrix H̄, Φk is the kth pilot sequence from the pilots book,
and N is a M × τ matrix containing the AWGN samples.

When we assume perfect orthogonality between the pilot
sequences, interference is effectively eliminated. Conse-
quently, the channel estimation process is solely influenced
by noise. This simplifies the analysis of channel estimation,
allowing for the use of a single value for parameter k in
Equation (10) for analytical convenience.

In the channel estimation process for h̄k, the BS must
perform a multiplication or correlation operation between Ȳ,
as defined in Equation (10), and the pilot sequence Φk. This
operation results in the processed received pilot signal, which
is expressed as

eyk ¼ ȲΦ∗
k ¼ ∑

K

k¼1
τ

ffiffiffi
P

p
h̄k þ NΦ∗

k ; ð11Þ

which has dimension M × 1 and we have employed that
ΦT

kΦ
∗
k ¼ τ. The processed received signal ỹk contains suffi-

cient statistics necessary for estimating h̄k, as it retains all the
information present in the originally received signal Ȳ, a
principle well established in the literature [22].

The MMSE estimator of h̄k is the vector bhk that mini-
mizes Efkh̄k −

bhkjj2g:. Hence, leveraging [25, Theorem 3.1],
we can establish that the kth estimated channel vector in our
scenario is attainable through

bhk ¼ cov h̄keyHkÈ É
cov eykeyHkÈ É

−1eyk: ð12Þ

In addition, since NΦ∗
k ∼CNð0M; τσ2nIMÞ :, we have that

cov h̄keyHkÈ É ¼ E h̄keyHkÈ É
− E h̄k

È É
E eyHkÈ ÉÀ Á

¼ E τ
ffiffiffi
P

p
h̄kh̄kH þ h̄kΦ

T
kN

H
È É

− τ
ffiffiffi
P

p
E h̄k

È É
E h̄H

k

È É
¼ τ

ffiffiffi
P

p
cov h̄k

È É
;

ð13Þ

and that

cov eykeyHkÈ É
−1 ¼ E eykeyHkÈ É

− E eykf gE eyHkÈ ÉÀ Á
−1

¼ τ2PE h̄kh̄kH
È É

− τ2PE h̄k

È É
2

À
þ E NΦ∗

kΦ
T
kN

H
È É Þ −1

¼ τ2P cov h̄k

È Éþ τσ2nIM
À Á

−1:

ð14Þ

Thus, using Equations (13) and (14) and after some sim-
plifications, Equation (12) can be rewritten as

bhk ¼
ffiffiffi
P

p
cov h̄k

È É
Ψeyk; ð15Þ

where

Ψ ¼ τP cov h̄k

È Éþ σ2nIM
À Á

−1: ð16Þ

Hence, the vector containing the channel estimation error
can be written as

e¼ h̄k − bhk: ð17Þ

Due to the orthogonality principle [22], the channel esti-
mate and the error are uncorrelated. Hence, fromEquation (17),
we can write the following covariance matrix

cov ef g ¼ E h̄k −
bhk

� �
h̄k −

bhk

� �
H

n o
− E h̄k −

bhk

n o
E h̄k −

bhk

� �
H

n o
¼ E h̄kh̄kH

È É
− E h̄k

bhH
k

n o
− E bhkh̄

H
k

n o
þ E bhk

bhH
k

n o
− E h̄k −

bhk

n o
E h̄k −

bhk

� �
H

n o
:

ð18Þ

Appendix shows that Equation (18) can be simplified to

cov ef g ¼ cov h̄k

È É
− τP cov h̄k

È É
Ψ cov h̄k

È É
; ð19Þ
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where

cov h̄k

È É¼ σ2k
Kk þ 1

R: ð20Þ

Now, with the aid of [25, eq. (3.20)] and using Equations (19)
and (20), the NMSE for the MMSE channel estimation in M-
MIMO systems over correlated Rician fading can be obtained as

NMSE ¼ tr cov ef gð Þ
tr cov h̄k

È ÉÀ Á ;
¼

tr R − γ
σ2k

Kkþ1R γ
σ2k

Kkþ1Rþ IM
� �

−1
R

� �
tr Rð Þ ;

ð21Þ

where γ is the signal-to-noise ratio (SNR) at the receiver
during pilot signaling, which is given by

γ ¼ τP
σ2n

: ð22Þ

Assuming that ζ follows a Gaussian distribution (angular
distribution scenario), i.e., ζ ∼Nð0; σ2φÞ :, from Equations (7)
and (8), the entries of matrix R in Equation (27) can be
obtained as

rl;m ¼ 1ffiffiffiffiffi
2π

p
σφ

Z 1

−1
exp j2πd sin φþ δð Þ l −mð ÞÀ Á

× exp −
δ2

2σ2φ

� �
dδ;

ð23Þ

for l¼ 1; 2;…;M and m¼ 1; 2;…;M. By considering that ζ
is a very small angular deviation and using that sinðφþ δÞ : ¼
cosðφÞ :sinðδÞ : þ sinðφÞ :cosðδÞ :, and that sinðζÞ : ≈ ζ and that
cosðζÞ : ≈ 1, Equation (23) can be approximated by

rl;m ≈ exp jαl;m −
1
2

σφαl;m cot φ
Â Ã

2

� �
; ð24Þ

with

αl;m ¼ 2πd l −mð Þsin φ; ð25Þ

where we have also employed that cot φ¼ cos φ=sin φ.
As a consequence, trðRÞ : is obtained as

tr Rð Þ ¼ ∑
M

m¼1
exp jαm;m −

1
2

σφαm;m cot φ
Â Ã

2

� �
¼M;

ð26Þ

wherewehave used thatαm;m ¼ 0.With this result, Equation (21)
can be finally rewritten as

NMSE¼ 1 −
γ

M

σ2k
Kk þ 1

tr R2 γ
σ2k

Kk þ 1
Rþ IM

� �
−1

� �
;

ð27Þ

where we have also used that trðA−BÞ : ¼ trðAÞ : − trðBÞ :,
trðcAÞ : ¼ c trðAÞ :, and the fact that the trace is invariant under
circular shifts, i.e., trðABCÞ : ¼ trðBCAÞ : ¼ trðCABÞ :.

An interesting observation is that the NMSE expression
in Equation (27) remains independent of the angle θk. Fur-
thermore, it is worth noting that asKk tends toward infinity,
the second term in Equation (27) approaches zero, resulting
in the NMSE converging to 1. This outcome implies that a
larger value of K corresponds to a heightened estimation
error. Consequently, for a fixed number of antennas and a
specific SNR, the most accurate channel estimation is achieved
when dealing with Rayleigh fading channels, where Kk ¼ 0.
These insights will be confirmed in the subsequent section.

Finally, for validating the derived expression for the NMSE,
we consider the high SNR regime, i.e., γ →1. In this case,
Equation (27) can be reduced to

NMSE ≈ 1 −
γ

M

σ2k
Kk þ 1

tr R2 γ
σ2k

Kk þ 1
R

� �
−1

� �

≈
ðaÞ
1 −

1
M

tr Rð Þ

≈
ðbÞ
0;

ð28Þ

where in step (a), we have used that AA−1 ¼ I, that ðcAÞ−1 ¼
c−1A−1, and that trðcAÞ : ¼ c trðAÞ :, and in step (b) we have
used the result of Equation (26). Therefore, as indicated
by Equation (28), achieving a low channel estimation error
necessitates ensuring a high SNR, aligning with the expected
outcome and thus substantiating the validity of our mathe-
matical model.

4. Results and Discussions

This section features a presentation of numerical results across
a variety of representative scenarios.

4.1. Parameters Setting. For the computations performed in this
section, we employ a spatial correlationmatrixR with a Gaussian
angular distribution. According to the findings in [43], a suit-
able value for σφ in urban scenarios stands at 10°. Conse-
quently, unless explicitly specified, this standard deviation is
employed in generating the random variable ζ, as defined in
Equation (7).

For the sake of simulations and without compromising
generality, we have adopted a nominal angle of φ¼ 50°.
Additionally, we assume that all radio paths experience fad-
ing channels with identical statistics, i.e.,K1 ¼K2 ¼⋯¼K
and σ21 ¼ σ22 ¼⋯¼ 1=

ffiffiffi
2

p
.

Ultimately, as our derived expressions are applicable to
both Rayleigh and Rician fading channels, we address both
scenarios in the subsequent subsection containing numerical

Wireless Communications and Mobile Computing 7



results. A total of 107 trials have been conducted to ensure
statistical robustness in generating the simulated outcomes.

4.2. Numerical Results. In Figure 2, we present the NMSE
plotted against the SNR for the UL of an M-MIMO system
employing a configuration withM¼ 100 antennas, operating
over correlated Rayleigh fading channels (K¼ 0). The ULA
interelement spacing, parameterized in terms of the signal
wavelength λ, is varied to study its impact on NMSE. Within
the figure, an appreciable alignment is observed between the
simulation results and the theoretical outcomes, as computed
using Equation (27). It is noteworthy that a decrease in the
ULA interelement spacing corresponds to lower NMSE values.
This phenomenon arises due to the heightened spatial cor-
relation between antennas, enabling the MMSE estimator to
achieve more precise channel estimates. Consequently, the
uncorrelated scenario exhibits higher NMSE, underscoring
the beneficial impact of channel correlation on enhanced
channel estimation in M-MIMO systems. Furthermore, the
NMSE exhibits a decreasing trend as the SNR rises. Specifi-
cally, a boost in the SNR of the M-MIMO system results in
more accurate channel estimation, aligning with an expected
outcome.

In Figure 3, we examine the relationship between the
NMSE and the ULA interelement spacing expressed in terms
of λ. These plots are conducted considering the UL of an M-
MIMO system where the BS comprises 100 antennas. The
system operates across a range of correlated fading channels,
parameterized by the Rician factorK, with a fixed SNR of γ=
10dB. Notably, the results reveal that the average NMSE is
directly proportional to the ULA interelement spacing, affirm-
ing the trend observed in the previous figure. It is essential to
acknowledge that, in practical scenarios, a certain separation
between antennas is practically unavoidable, driven by consid-
erations such as the physical size of antennas and various

implementation factors. This separation between antennas is
vital for achieving diversity in signal reception. Consequently,
there exists an inherent trade-off in the design and implemen-
tation of M-MIMO systems, seeking a balance between pre-
serving diversity and minimizing channel estimation errors.
Additionally, it is evident from the results that as the Rician
factor K increases, the average NMSE also experiences an
increase. This outcome implies that with a constant SNR, the
channel estimation error rises as the power of the LOS com-
ponent grows, highlighting the intricacies of channel estima-
tion in varying signal propagation conditions.

In Figure 4, the NMSE is explored as a function of the
number of antennas at the receiver, denoted by N , and the
ULA interelement spacing expressed in terms of λ. These

–10 –5 0 5 10 15 20 25 30 35 40
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FIGURE 2: NMSE for MMSE channel estimation in an M-MIMO
system as a function of the SNR and parameterized by different
values of ULA interelement spacing, given in terms of λ, considering
M¼ 100 antennas and a correlated Rayleigh fading channel.
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FIGURE 3: NMSE vs. the ULA interelement spacing, given in terms of
λ, considering γ¼ 10 dB in the UL of an M-MIMO system where
the BS employs M¼ 100 antennas across a range of correlated
fading channels, parameterized by K.
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spacing, given in terms of λ, considering an M-MIMO system over
correlated Rician fading assuming K¼ 2, and γ¼ 30 dB.
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investigations are conducted within an M-MIMO system
operating over correlatedRician fading channels, with parameters
set atK¼ 2 and an SNR of γ¼ 30 dB. A notable observation in
this figure is the clear trend that as the number of antennas at the
receiver increases, the NMSE approaches zero. Conversely, with
an increase in ULA interelement spacing, the NMSE also rises.
This outcome highlights the intriguing dynamic wherein a larger
receiver antenna array contributes to more accurate channel vec-
tor estimation. However, it is imperative to bear inmind practical
implementation considerations, as an excessive number of anten-
nas or a significant separation between antennas can lead to
infeasible scenarios. Consequently, the mathematical expression
developed in this work serves as a tool for guiding the design of
practical M-MIMO systems.

Finally, Figure 5 illustrates the behavior of the NMSE
in an M-MIMO system concerning the SNR. The analysis
involves a ULA interelement spacing of d¼ λ=2, and the
parameterK is varied. In this figure, we also introduce mod-
ifications to the value of σφ. Notably, some slight deviations
are observed between the theoretical results and the simula-
tions, particularly in the case of σφ ¼ 20°. This disparity arises
from the increased values that the random variable ζ (refer to
Equation (7)) can assume as σφ rises. As a result, the approx-
imations employed in the calculation of Equation (24) intro-
duce minor discrepancies between theoretical and simulated
results. Nevertheless, these differences are nearly impercepti-
ble. It is worth noting that, irrespective of the scenario, an
increase in the SNR leads to a reduction in NMSE. This trend
implies that the presence of a dominant LOS component
significantly impacts the average NMSE of theMMSE estima-
tor, which can be mitigated through SNR enhancement. Fur-
thermore, the average NMSE tends to rise when σφ is elevated
as a consequence of the greater standard deviation in the
angle deviation within the correlation channel model. This
heightened variability in the multipath signal introduces

complexity to channel estimation, resulting in increased esti-
mation errors. Nonetheless, such challenges can be ameliorated
by increasing the SNR, as noticed in the numerical results.

All the previous results offer interesting insights into the
practical implications for the design and implementation of
M-MIMO systems. The investigation into the relationship
between NMSE and ULA interelement spacing underscores
the significance of optimizing the physical arrangement of
antennas to exploit heightened spatial correlation and achieve
more precise channel estimates. However, a trade-off exists in
practical scenarios, as maintaining spatial diversity necessi-
tates a certain separation between antennas. Additionally, the
results highlight the impact of the RicianK factor on NMSE,
emphasizing the need for tailored strategies in scenarios
with varying LOS power. Furthermore, the observed trends
affirm the importance of SNR for accurate channel estima-
tion, suggesting that efforts to improve SNR can contribute
to enhanced overall system performance. In essence, the find-
ings guide M-MIMO system designers in balancing antenna
configurations, considering practical constraints, and under-
standing signal propagation conditions for optimal channel
estimation in real-world environments.

5. Conclusions

This work undertook an examination of the NMSE in the
context ofM-MIMO systems operating over correlated Rician
fading channels. The correlated channel model was estab-
lished by employing a correlation matrix that encapsulates
the local angular dispersion across different angles of signal
arrival. Within this system framework, we formulated an
expression for assessing the NMSE, which hinges on several
critical parameters, including the Rician K factor, the quan-
tity of receiving antennas, their spatial separation, the SNR,
and the characteristics of the spatial correlation matrix.

The numerical findings underscore several key insights.
First, as the power of the LOS component intensifies, the
NMSE increases. Conversely, heightened spatial correlation
among signals and a reduction in the separation between
antennas at the BS contribute to a decrease inNMSE. Similarly,
an augmented number of antennas at the BS or an increase in
SNR ensures a lower NMSE. Hence, the mathematical expres-
sion developed in this study offers a valuable tool for the
design of M-MIMO systems, enabling the establishment of
an optimal trade-off between implementation costs and channel
estimation errors, which directly impacts system performance.

For future research endeavors, it is worthwhile to explore
the NMSE in M-MIMO systems under different generalized
channel models, such as κ-μ or η-μ. These models have
gained attention as they aptly represent fading characteristics
in millimeter-wave frequency scenarios, as evidenced in
recent studies [44]. Furthermore, there is room for consider-
ing alternative statistical distributions to generate random
angles that emulate the local dispersion within the correlated
channel, potentially unveiling further insights into M-MIMO
system performance over different scenarios. In particular,
different distributions can influence the level of spatial cor-
relation among antennas in the M-MIMO system. For
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γ (dB)
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σφ = 1° (theoretical)
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κ = 0, 0.1, 1, 3, 5

σφ = 20° (theoretical)

–10 –5 0 5 10 15 20 25 30 35 40
10–5

10–4

10–3

10–2

10–1

100

FIGURE 5: NMSE for an M-MIMO system vs. the SNR considering
a ULA interelement spacing equal to d¼ λ=2 parameterized by K
and σφ.
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instance, in [45, Section 7.4], Laplace distributed deviations
are presented, and in [33], uniformly distributed deviations
are considered.

Appendix

Covariance Matrix Calculation for the Channel
Estimation Error

In this appendix, the covariance matrix of the channel esti-
mation error is simplified. For this, in the following, we cal-
culate each term of Equation (18).

The first term in Equation (18) can be obtained as

E h̄kh̄
H
k

È É ¼ cov h̄k

È Éþ E h̄k

È É
E h̄H

k

È É
¼ cov h̄k

È Éþ E h̄k

È É
2:

ðA:1Þ

Moreover, by considering Equation (15), the second term
in Equation (18) can be calculated as [15]

E h̄k
bhH
k

n o
¼ E h̄k τP cov h̄k

È É
Ψ h̄k

À Á
H

È É
þ E h̄k

ffiffiffi
P

p
cov h̄k

È É
ΨNΦ∗

k

À Á
H

È É
¼ τP cov h̄k

È Éþ E2 h̄k

È ÉÀ Á
ΨHcov h̄k

È É
H :

ðA:2Þ

Since R is a Toeplitz matrix, we have that ðcovfh̄kgÞH ¼
covfh̄kg:. Therefore, Equation (A.2) can be rewritten as

E h̄k
bhH
k

n o
¼ τP cov h̄k

È Éþ E h̄k

È É
2

À Á
Ψ cov h̄k

È É
:

ðA:3Þ

By following a similar procedure, the third term in
Equation (18) can be obtained as

E bhkh̄
H
k

n o
¼ E

ffiffiffi
P

p
cov h̄k

È É
Ψeykh̄H

k

È É
¼ τP cov h̄k

È É
Ψ E h̄k

È É
2 þ cov h̄k

È ÉÀ Á
:

ðA:4Þ

The fourth and fifth terms in Equation (18) are obtained
as Equations (A.5) and (A.6), respectively, which are located
at the bottom of this page. Then, using Equations (A.1)–(A.6)
in Equation (18) and after some manipulations and simpli-
fications, the covariance matrix of the channel estimation
error can be rewritten as Equation (19).

E bhk
bhH
k

n o
¼ E PCov h̄k

È É
ΨeykeyHk ΨHCov h̄k

È É
H

È É
¼ E τ2P2Cov h̄k

È É
Ψ h̄kh̄

H
k Ψ

HCov h̄k

È É
H þ PCov h̄k

È É
ΨNΦ∗

kΦ
T
kN

HΨHCov h̄k

È É
H

È É
¼ τ2P2Cov h̄k

È É
Ψ Cov h̄k

È Éþ E h̄k

È É
2

À Á
Ψ Cov h̄k

È Éþ τPCov h̄k

È É
Ψσ2nIMΨ Cov h̄k

È É
:

ðA:5Þ

E h̄k −
bhk

� �
H

��� ���2n o
¼ E h̄k

È É
− τPCov h̄k

È É
ΨE h̄k

È ÉÀ Á
E h̄H

k

È É
− τPE h̄H

k

È É
ΨHCov h̄k

È É
H

À Á
¼ E h̄k

È É
2
− τPE h̄k

È É
2ΨHCov h̄k

È É
H
− τPCov h̄k

È É
ΨE h̄k

È É
2

þ τ2P2Cov h̄k

È É
ΨE h̄k

È É
2ΨHCov h̄k

È É
H

¼ E h̄k

È É
2
− τPE h̄k

È É
2Ψ Cov h̄k

È É
− τPCov h̄k

È É
ΨE h̄k

È É
2

þ τ2P2Cov h̄k

È É
ΨE h̄k

È É
2Ψ Cov h̄k

È É
:

ðA:6Þ

In Equation (19), considering that h̄k ¼R
1
2hk like in

Equation (2), the covariance matrix of h̄k is obtained as

cov h̄k

È É ¼ R
1
2E hkhHk
È É

R
1
2

À ÁH
− R

1
2E hkf gE hHk

È É
R

1
2

À ÁH : ðA:7Þ

In addition, we have that

E hkhHk
È É¼ E

h1h
∗
1 h1h

∗
2 ⋯ h1h

∗
M

h2h
∗
1 h2h

∗
2 ⋯ h2h

∗
M

⋮ ⋮ ⋱ ⋮
hMh∗1 hMh∗2 ⋯ hMh∗M

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;
; ðA:8Þ

10 Wireless Communications and Mobile Computing



such that

E hah∗b
È É¼

σ2k þKk

Kk þ 1
; a¼ b

Kk

Kk þ 1
; a ≠ b:

8>><
>>: ðA:9Þ

Thus, using Equations (A.8) and (A.9), that Efhkg: ¼
Efh∗kg : ¼ð Kk

Kkþ1Þ−
1
2, and after somemanipulations, it is possible

to show that Equation (A.7) can be rewritten as Equation (20).
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