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The development of the internet of things (IoT) and 6G has given rise to numerous computation-intensive and latency-sensitive
applications, which can be represented as directed acyclic graphs (DAGs). However, achieving these applications poses a huge
challenge for user equipment (UE) that are constrained in computational power and battery capacity. In this paper, considering
different requirements in various task scenarios, we aim to optimize the execution latency and energy consumption of the entire
mobile edge computing (MEC) system. The system consists of single UE and multiple heterogeneous MEC servers to improve the
execution efficiency of a DAG application. In addition, the execution reliability of a DAG application is viewed as a constraint.
Based on the strong search capability and Pareto optimality theory of the cuckoo search (CS) algorithm and our previously
proposed improved multiobjective cuckoo search (IMOCS) algorithm, we improve the initialization process and the update
strategy of the external archive, and propose a reliability-constrained multiobjective cuckoo search (RCMOCS) algorithm. Accord-
ing to the simulation results, our proposed RCMOCS algorithm is able to obtain better Pareto frontiers and achieve satisfactory
performance while ensuring execution reliability.

1. Introduction

With the advent of the internet of everything, autonomous
driving, immersive games based on VR or AR technology, and
the industrial internet of things (IoT) are emerging [1]. How-
ever, achieving these computation-intensive and latency-
sensitive applications poses a significant challenge for user
equipment (UE) that is limited in terms of computation
power and battery capacity [2, 3]. To solve this problem,
mobile edge computing (MEC) is proposed as a new and
popular computing paradigm. It provides users with abun-
dant computing resources and reliable computing services at
the edge of access networks [4–7].

In MEC, an increasingly important research concern is
the scheduling of directed acyclic graph (DAG) applications.
These applications are considered practical for representing
multiple interdependent submodules, such as vehicle naviga-
tion [2] and object classification [8]. Offloading subtasks of
a DAG to nearby MEC servers can reduce application

execution latency and energy consumption of user equip-
ment, thereby improving the execution efficiency of DAG
applications.

Oriented task scheduling for DAG applications, a con-
siderable part of the works is dedicated to solving single-
objective task scheduling problems in order to optimize exe-
cution latency [2, 9–11], and energy consumption [7, 12, 13].
However, for practical applications, especially safety-critical
ones, execution reliability is a crucial factor in ensuring the
quality of service (QoS) for users. Due to the existing failure
rate of computing devices, when a processor fails during task
execution, it affects the execution reliability of the execution.
As a result, re-executing the task consumes more time and
energy [7]. Therefore, in addition to the indicators men-
tioned above, there is an increasing focus on execution reli-
ability [7, 14–19]. Based on the above analysis, we consider
execution reliability as a constraint in DAG task scheduling
in this paper.
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In practice, instead of focusing on a single indicator,
different requirements are usually presented in various task
scenarios. In addition, in MEC systems, latency and energy
consumption of the entire system often conflict with each
other. Therefore, it is crucial to study multiobjective task
scheduling optimization problems in order to explore trade-
off solutions. This will ensure that satisfying scheduling
schemes are provided to users in the different task scenarios.

As the cuckoo search (CS) algorithm [20] has the advan-
tages of simplicity, high robustness, and high efficiency, it
has been employed to solve multiobjective optimization pro-
blems in a variety of fields, including network awareness,
resource allocation, and task scheduling, etc. [21–23]. These
research studies indicate that it outperforms traditional opti-
mization algorithms such as whale optimization and hybrid
bee colony optimization, among others. Thus, we still utilize
the CS algorithm [20] and the multiobjective cuckoo search
(MOCS) algorithm [24] to solve a multiobjective task sched-
uling problem for DAG applications based on our previously
proposed improved multiobjective cuckoo search (IMOCS)
algorithm [25].

The main contributions in this paper are summarized as
follows:

(1) The formulation of a multiobjective DAG task schedul-
ing problem aims tominimize the execution latency and
energy consumption of the entire MEC system while
satisfying the given execution reliability constraint.

(2) The reliability-constrained multiobjective cuckoo
search (RCMOCS) algorithm is proposed. Different
from our previous work [25], we take into account
the execution reliability constraint and make further
improvements to the initialization process and
update strategy of the external archive. This allows
us to obtain Pareto solutions that meet the specified
constraint.

Simulation results demonstrate that under the constraint
of execution reliability, the proposed RCMOCS algorithm
consumes less latency and energy in the entire MEC system.
It also outperforms the comparison algorithms in terms of
convergence and uniformity.

The structure of the paper is as follows: Section 2 intro-
duces the related literature. Section 3 introduces the system
models. Problem formulation are introduced in Section 4.
Section 5 presents the proposed multiobjective task schedul-
ing algorithm. Simulation results are shown in Section 6.
Section 7 concludes the main work of this paper.

2. Literature Review

Recently, a large number of research studies on task sched-
uling have been conducted. In this section, we will classify
and analyze the relevant research.

Aiming at the task offloading problem in the small cellu-
lar network scenario, plenty of studies have focused on
single-objective task scheduling problems for DAG applica-
tions. Different from task scheduling for general tasks like,
where Zhang et al. [26] proposed the artificial fish swarm

algorithm to optimize the system’s energy with limited delay,
Shu et al. [2] proposed a distributed offloading policy in a
multiuser and multiserver scenario to minimize execution
latency while adhering to an energy consumption constraint.
Hu et al. [11] converted large-scale graphs in social networks
into DAGs and proposed a heterogeneous-aware cluster
scheduling algorithm to minimize the processing time of a
DAG. In a multiuser and multiserver scenario, Dong et al.
[27] designed a quantum particle swarm optimization
(QPSO) algorithm to minimize the total energy consump-
tion of all users and MEC servers within a limited time.
Aiming at minimizing the total energy consumption of all
tasks, Yin et al. [28] proposed a novel task scheduling algo-
rithm based on the firefly algorithm in a cloud-edge system.

In addition, execution reliability is receiving increasing
attention as it is crucial to ensure users’ QoS. For example,
Liu et al. [7] designed a heuristic algorithm to minimize the
energy consumption of a UE, considering constraints such as
the execution latency and execution reliability of a DAG
application. Hu and Cao [18] proposed a DAG application
scheduling policy with reliability requirements in a hetero-
geneous embedded system. They priced the tradeoff between
reliability and resource consumption costs and gradually
adjusted the schedule to improve reliability.

Optimization objectives in the above studies are all sin-
gular, but in practice, multiple performance indicators are
usually taken into consideration. It should also be noted that
the improvement of one indicator always comes at the
expense of the decline of other indicators. Therefore, it is
crucial and meaningful to study multiobjective optimization
problems in order to explore tradeoff solutions.

Aiming to minimize the execution latency and energy
consumption of UE, Chen et al. [29] proposed a method of
user perceptual task offloading in the IoT based on an opti-
mizing strategy of quantum behavior particle population.
This method aims to reduce execution time and energy con-
sumption for the offloading scenario involving multiple edge
center servers and smart devices used by multiple IoT users.
Peng et al. [30] optimized the execution latency and energy
consumption of UE in mobile cloud computing using the
weighted summation method and the whale optimization
algorithm (WOA). Nevertheless, both of the above studies
transformed a multiobjective problem into a single-objective
one by using a weighted cumulative function. However, this
approach requires manual adjustment of weight parameters
and cannot accommodate changes in the requirements.

Instead, taking advantage of multiobjective evolutionary
algorithms, Zhou et al. [31] proposed a multiobjective work-
flow scheduling algorithm based on genetic algorithms (GA)
and a delay transmission mechanism in mobile cloud com-
puting. But this method requires a significant amount of com-
puting resources and may lead to local optimal solutions. Sun
et al. [32] propose an effective multiobjective immune algo-
rithm (MOIA) to solve themultiobjective scheduling problem
and generate Pareto-optimal solutions for achieving joint
optimization of computational efficiency and energy effi-
ciency in the hyperspectral image classification applications.
However, the diversity maintenance methods of immune
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algorithms may not be sufficient to effectively explore and
preserve the entire Pareto front. Zhou et al. [33] developed
a multiobjective ant colony system algorithm (MOACS) for
the airline crew rostering problem, focusing on fairness and
satisfaction. Fang et al. [34] proposed an improved multiob-
jective evolutionary algorithm for high-quality pattern min-
ing (MOEA-PM) to optimize three objectives in pattern
mining. Although, they are not oriented toward task schedul-
ing, the idea of their population initialization strategies is
worth learning from. Zhang et al. [35] improved the NSGA-
II algorithm to minimize the average energy consumption
and task offloading delay of all vehicles in the context of the
internet of vehicles.

Considering reliability as an indicator, in [36], a new
multiobjective scheduling algorithm with fuzzy resource uti-
lization was proposed. This algorithm was developed under
the constraint of execution reliability and utilized particle
swarm optimization (PSO) and Pareto dominance. Neverthe-
less, further optimization is needed for themanagement of the
archive. Tang [14] proposed a fault-tolerant cost-efficient
workflow scheduling algorithm that minimizes the cost and
time of application execution, while also ensuring reliability.
Huang et al. [17] presented an out-degree scheduling algo-
rithm that allocates the DAG nodes based on their out-
degrees, considering energy consumption, reliability, and
dynamic finish time. Hu et al. [19] built a safety-guaranteed
and development cost-minimized schedule for functionality
modeled as a DAG running on an automotive system.

Through the analysis of the literature above, it can be
observed that the majority of current studies focuses on hetero-
geneous computing systems and cloud computing. However,
there is a lack of research on multiobjective task scheduling for

DAG applications in MEC scenarios. In terms of algorithms,
several existing multiobjective task scheduling algorithms are
based on the GA and PSO algorithm, whose search capabilities
are weaker than CS. In this paper, on the basis of our previously
proposed IMOCS algorithm, we optimize the execution latency
and energy consumption of the entire MEC system, taking into
account the execution reliability.

3. System Models

In this section, we will introduce the details of the system
model. As shown in Figure 1, there is a UE that is running a
computation-intensive and latency-sensitive DAG applica-
tion. Multiple base stations are deployed in the MEC net-
work, each of which is embedded with an MEC server. In this
system, all processors including the UE and M heteroge-
neous MEC servers are denoted by s0 and a set S, respectively.
Specifically, the set S is represented as S¼fs1; s2;…; sMg.

In the following subsections, we will present the DAG
application model, communication model, computation
model, and reliability model.

3.1. DAG Application Model. DAG provides an efficient
representation for typical practical applications that consist
of a series of submodules with dependencies. An application
can be described as G= (V, E). Here, V represents the set ofN
subtasks in DAG G and it is denoted as V ¼fv1; v2;…; vNg.
Each subtask vi is described by fmi; ci; aig, where mi is the
size of subtask vi, ci is the required CPU cycles to complete vi,
and αi is the scheduling decision of vi. For example, a3 ¼ 2
represents that subtask v3 is offloaded to MEC server s2. E¼
fðeðvi; vjÞÞj jvi; vj 2Vg is composed of all directed edges,
where eðvi; vjÞ means that vi is the predecessor of vj and vj is
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FIGURE 1: System model.
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the successor of vi. Subtask vj does not start until vi is done.
The edge e (vi, vj)’s weight wij is equal to the size of vi’s execu-
tion result. Subtask vi’s predecessors and successors constitute
pred (vi) and succ (vi), respectively. Without loss of generality,
each DAG has one entry subtask ventry without any predeces-
sors and one exit subtask vexit without any successors.

3.2. Communication Model. DAG-based task scheduling is
equivalent to determining the execution location for each
subtask. In this subsection, we will analyze the process of
offloading subtasks to MEC servers and transmitting execu-
tion results in detail.

Assuming that subtask vi is offloaded to MEC server sm,
that is, ai=m, the offloading latency is given as follows:

Tcomm
im ¼mi=r0m; ð1Þ

where mi is the size of subtask vi and r0m is the uplink
data rate.

After subtask vi is completed, the output of vi executed on
processor sm is sent to processor sn that is executing the
successor subtask vj of vi. The transmission latency of the
result of vi is given by:

Tcomm
i j ¼ wij=rmn;

ai ¼m; aj ¼ n;

e vi; vj
À Á 2 E;m ≠ n;

0; ai ¼ aj

8><
>: ð2Þ

where rmn is the transmission rate between sm and sn. When
two subtasks with a dependency are executed on the same
processor, the transmission latency can be neglected.

Besides, the energy consumption of processor sm for exe-
cuting the transmission of subtask vi is denoted by:

Ecomm
i j ¼ PmTcomm

i j ; ð3Þ

where Pm is the transmission power of processor sm.

3.3. Computation Model. In DAG G, each subtask is per-
formed on UE or offloaded to an MEC server for execution.
The required latency in both cases is analyzed.

If subtask vi is executed locally, the execution latency and
the energy that the UE consumes are given by:

Tcomp
i0 ¼ ci=f0; ð4Þ

Ecomp
i0 ¼ ciδ0; ð5Þ

where f0 is the computational capability of UE and δ0 is the
energy consumption of the UE in a CPU cycle.

When subtask vi is offloaded to MEC server sm, the exe-
cution latency is as follows:

Tcomp
im ¼ ci=fm; ð6Þ

where fm denotes the computational capability of the MEC
server sm.

To complete subtask vi, the total energy that the total
energy consumed by the entire system is given by:

Ei ¼ Ecomm
im þ Ecomp

im ¼ P0Tcomm
im þ ciδm: ð7Þ

The first part calculates the energy consumption of theUE for
offloading subtask vi, while the second part determines the energy
consumption of the MEC server sm for executing subtask vi.

Based on the analysis above, we provide the energy con-
sumption of the entire system when performing any subtask
vi.

E tið Þ ¼
Ecomp
i0 þ Ecomm

i j ; ai ¼ 0;

Ecomm
im þ Ecomp

im þ Ecomm
i j ;

ai ¼m;

m ≠ 0:

8><
>: ð8Þ

For local computing, a UE consumes energy to complete a
subtask vi and transmit its execution result. For edge com-
puting, we consider the energy consumption of the UE for
offloading subtask vi, as well as the energy consumption of
the MEC server sm for executing vi and transmitting its result.

Then, we provide the total energy consumption of the
entire system for completing a DAG application as follows:

E Gð Þ ¼ ∑
N

i¼1
E tið Þ: ð9Þ

3.4. Reliability Model. Communication reliability and execu-
tion reliability are commonly used to assess the reliability of
task scheduling [37]. Considering that communication reli-
ability has been well-researched [38–40], and the research on
execution reliability is limited, we focuses on the execution
reliability of a DAG application in this paper.

The execution reliability is defined by the Poisson distri-
bution with a parameter ρ. For processor sm, ρm is its failure
rate per unit of time. It is a random variable that follows a
Gaussian distribution [7]. The reliability of subtask vi exe-
cuted on sm is defined as follows:

Rim ¼ exp −ρmci=fmð Þ: ð10Þ

For the entire application, the reliability is the accumu-
lated execution reliability of all subtasks in a DAG, which is
denoted as follows:

R Gð Þ ¼ ∏
N

i¼1
Rim: ð11Þ
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In this paper, the given constraint is set as follows:

Rgiven Gð Þ ¼ ∏
N

i¼1
eρ∗Ti ; ð12Þ

where ρ and Ti represent the average failure rate and average
execution latency of subtask vi, respectively. Then we con-
strain the execution reliability of the whole application as
follows:

R Gð Þ ≥ Rgiven Gð Þ: ð13Þ

4. Problem Formulation

In this article, we consider the dependency among subtasks
and aim to minimize the execution latency and energy con-
sumption of the whole MEC system for the DAG application,
while ensuring the reliability constraint is met. Before for-
mulating the optimization problem, it is necessary to provide
several definitions.

First of all, for subtask vi executed on processor sm, its
earliest start time (EST) is defined as follows:

EST við Þ ¼max avail smð Þ; arv i;mð Þ;f
max

vj2pred við Þ;
aj¼n

EFT vj
À Áþ Tcomm

ji

h io
; ð14Þ

where avail (sm) is the earliest time that processor sm is free to
perform subtask vi, arv (i,m) is the time when subtask vi
arrives at processor sm, and EFT (vj) is the earliest finish
time of vi’s predecessor subtask vj. The execution of subtask
vi cannot start unless its predecessors are completed and sm
receives data required for executing vi. This constraint can be
represented as follows:

EST við Þ ≥ EFT vj
À Áþ Tcomm

ji : ð15Þ

Furthermore, if two subtasks vi and vj are scheduled on
the same processor, their processing times do not overlap,
and the execution order depends on their priority, namely:

EST við Þ ≥ EFT vj
À Á

; vj 2 hpri við Þ; ð16Þ

where hpri(vi) is a set that contains subtasks with higher
priority than vi.

In addition, the arrival of subtask vi at processor sm is a
prerequisite for starting the execution of vi, which is denoted
as follows:

arv i;mð Þ ≤ EST við Þ: ð17Þ

Based on the definitions provided above, our multiobjec-
tive task scheduling problem can be formulated as follows:

min EFT vexitð Þ;
min E Gð Þ; ð18Þ

s:t: 13ð Þ; 15ð Þ; 16ð Þ; 17ð Þ; ð19Þ

EST við Þ ≥ 0;   8vi 2 V : ð20Þ

As the exit subtask vexit has the lowest priority, the exe-
cution latency of the DAG application is exactly the finish
time of vexit. Besides, Equation (20) ensures that the earliest
start time of all subtasks cannot be earlier than time 0.

5. RCMOCS Task Scheduling Algorithm

Based on the IMOCS algorithm [25], we establish an external
archive and devise a method for updating it. Through the
process of evolution, we obtain more satisfying Pareto-
optimal solutions. In addition, we also take into account
the execution reliability of a DAG application and propose
a RCMOCS task scheduling algorithm to tackle the multi-
objective task scheduling problem.

5.1. RCMOCS Algorithm Architecture. Similar to the IMOCS
algorithm, the RCMOCS algorithm also includes the same
coding scheme, an update method for the direction of Lévy
flight, and an improved evolutionary process. However,
when considering reliability constraint, there are two main
differences between the IMOCS algorithm and the RCMOCS
algorithm.

(1) Instead of finding nondominated solutions in the
initial population and storing them directly into the
external archive [25], the RCMOCS algorithm takes
into account the reliability constraint. Thus, during
the initialization phase of the archive with a fixed
capacity of L, it is necessary to evaluate each solution
based on latency, energy consumption, and execu-
tion reliability. If there are nondominated solutions
that meet the reliability constraint, no more than L
solutions are stored in the archive. Otherwise, we will
select a subset of solutions that violate the given reli-
ability constraint to a lesser extent and store them in
the archive.

(2) In updating the archive, the execution reliability
needs to be considered. Algorithm 1 demonstrates
our well-designed update algorithm. It is assumed
that populations before and after the Lévy flight or
preference random walk are recorded as P0 and P1,
respectively, and the size of the population isNc. That
is, P1 (i) is the solution obtained by P0 (i) after a Lévy
flight or preference random walk. An indicator I is
set to determine whether P1 has a solution of higher
quality than P0. The indicator is initialized to false
(Line 1). When a solution P1 (i) is capable of domi-
nating the corresponding P0 (i) and the reliability of
P1 (i) is higher than that of P0 (i), the indicator is
updated to true. Another case in which I turns to
true is when P0 (i) dominates P1 (i) and P1 (i) has

Wireless Communications and Mobile Computing 5



higher reliability (Lines 3–4). Then, we determine if
P0 (i) is in the archive A. If it is already in A, we will
replace P0 (i) with P1 (i). Otherwise, P1 (i) is added to
A (Lines 5–10). After the comparison process is fin-
ished, the archive A needs to be reorganized. If I is
true, all nondominated solutions in A need to be
found first. Then, solutions that satisfy the given reli-
ability constraint are stored in A. If no solution satis-
fies the constraint, solutions with fewer violations are
kept in A (Lines 13–19). Finally, once the number of
solutions in A exceeds L, crowding distance sorting is
used to select L solutions that will be stored in A
(Lines 20–24).

The overall framework of the RCMOCS algorithm is the
same as the IMOCS [25]. During each iteration, the update of
the archive and generation of the population for the next
iteration, and the process of fast nondominated sorting and
crowding distance sorting, occupy the main part of the time
complexity. In detail, after Lévy flight and preference ran-
dom walk, new solutions need to be compared with old
solutions, and this process takes OðNcÞ time. Finding

nondominated solutions costsOð2 ⋅ N2
c Þ and crowding distance

sorting takes Oð2 ⋅ ð2NcÞ ⋅ logð2NcÞÞ time [41]. Finally, the
process of crowding distance sorting takes Oð4Nc ⋅ logð2NcÞÞ
time to select candidate solutions. Thus, each iteration takes
OðNc þN2

c þ 4Nc ⋅ logð2NcÞÞ time, which is equivalent to
OðN2

c Þ. Therefore, the complexity of the RCMOCS algorithm
is OðN2

c ⋅ TÞ, where T represents the number of iterations.

5.2. Performance Metrics. To evaluate the performance of the
proposed RCMOCS algorithm, we utilize the Q metric [31]
and the S metric [36] to evaluate its convergence and
uniformity, respectively.

5.2.1. Q Metric. The Q metric is used to measure the conver-
gence of the Pareto-optimal solutions obtained by multiob-
jective optimization algorithms A1 and A2. Algorithm A1 is
considered to be capable of finding a Pareto-optimal solution
set with better convergence than A2 if and only if the follow-
ing condition holds:

Q A1;A2ð Þ>Q A2;A1ð Þ orQ A1;A2ð Þ>0:5; ð21Þ

where QðA1;A2Þ¼ jΦj=jYj, Φ¼Y ∩ F1, Y ¼ F1 ∪ F2, F1
represents the Pareto solutions obtained by A1. Similarly,
QðA2;A1Þ¼ jΩj=jYj and Ω¼Y ∩ F2.

In order to conveniently describe the performance of
algorithms A1 and A2 in terms of convergence, the subse-
quent simulations use Q (A1,A2)= “True” to indicate that
the convergence of Pareto-optimal solutions obtained by
algorithm A1 is better than that of A2.

5.2.2. S Metric. To compare the uniformity of Pareto-optimal
solution sets obtained by different multiobjective optimiza-
tion algorithms, the S metric is used. The S metric is defined
as follows:

S¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Np

∑
Np

i¼1
d0i − d0
À Á2s

; ð22Þ

whereNp represents the number of Pareto-optimal solutions,
d0i denotes the minimum distance from the i-th solution in
the Pareto-optimal solution set to other solutions, and d0
signifies the average of the minimum distances from each
solution to the other solutions. The smaller the value of S is,
the more uniform the distribution of the optimal solution set
on the Pareto frontier becomes.

6. Simulation Experiments

In this section, numerical results are provided to verify the
performance of the proposed RCMOCS algorithm. In a
single-user multiserver MEC system, our goal is to optimize
the execution latency and energy consumption of the entire
system, while also considering the constraint of execution
reliability. To achieve this, we obtain a series of Pareto-optimal
solutions using various multiobjective algorithms. Q metric [31]
and S metric [36] are utilized to assess the convergence and
uniformity of the multiobjective optimization algorithms,

1: Initialize I= False and i= 1

2: while i≤Nc do

3: if P1 [i] ⪯ P0 [i] and P1 [i]’s reliability ≥ Rgiven (G) then

4: I=True

5: if P0 [i] in archive A then

6: Replace P0 [i] with P1 [i]

7: else

8: Add P1 [i] into archive A

9: end if

10: end if

11: i++
12: end while

13: if I is True then

14: Find all nondominated solutions in A

15: if the number of solutions that satisfy the reliability
constraint ≥ 0 then

16: Keep solutions which satisfies the reliability con-
straint in A

17: else

18: Keep solutions with less violation of the reliability
constraint in A

19: end if

20: if number of solutions in A≤ L then

21: Retain all solutions in A

22: else

23: Do crowding distance sorting and keep the top L
solutions in A

24: end if

25: end if

ALGORITHM 1: Update strategy of the archive in RCMOCS.
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respectively. In addition, we also explored the effect of the dis-
tance between UE and MEC servers on the Pareto-optimal
solutions.

The task scheduling simulation experiment is conducted
using Python and its third-party libraries, such as Sklearn,
Numpy, and so on. The computer used for simulation is
equipped with the Windows 10 operating system, with an
AMD Ryzen 7 4800U processor, and 16GB of memory.

Referring to the experimental settings in [2] and [42], we
provide specific simulation parameters for the considered
MEC scenario and DAG applications that are randomly gen-
erated in Table 1.

To validate the effectiveness of our proposed RCMOCS
algorithm, we choose the following four classic multiobjec-
tive algorithms:

(1) MOCS algorithm: It is an extension of the CS algo-
rithm that combines the search methods of Lévy
flight and preference random walk. It also utilizes
the concept of Pareto optimality to identify the
Pareto solutions [24]. In the simulation experiment,
the size of the cuckoo population is set to 200. The
maximum number of iterations is 120. In Lévy flight,
the step coefficient is 1. The probability of discovery
is set to 0.5.

(2) Multiobjective particle swarm optimization (MOPSO)
algorithm: It combines Pareto dominance and PSO
[43] to solve multiobjective optimization problems. An
external repository is used to guide the flight of particles,
and a mutation operator is utilized to prevent the algo-
rithm from converging to a suboptimal Pareto frontier.
In the simulation experiment, the size of the particle
swarm is 200 and the size of the repository is 40. The
maximum number of iterations is 120. When updating
the velocity of each particle, the inertia weight, cognitive
weight, and social weight are 0.5, 0.25, and 0.25, respec-
tively [36].

(3) Nondominated sorting genetic algorithm II (NSGA-II)
[41]: In NSGA-II, fast nondominated sorting approach
and crowding distance sorting were proposed to
achieve an excellent spread of solutions and improve
convergence near the true Pareto-optimal front. In the

simulation experiment, the population size is 200. The
maximum number of iterations is 120.

(4) Random algorithm: Under the premise of maintain-
ing the dependencies among subtasks in a DAG
application, all subtasks are randomly assigned to
corresponding processors in the considered MEC
system. The population size is set to 400.

In the proposed RCMOCS algorithm, the size of the
cuckoo population is 200. The capacity of the external
archive is set to 40. The maximum number of iterations is
120. The step coefficient is in the range of [1, 1.2], and the
discovery probability is 0.6.

6.1. Verification of Reliability Constraint. In this paper, we
consider the constraint of execution reliability for DAG applica-
tions. Therefore, it is challenging to directly apply the aforemen-
tioned algorithms to our problem. For theMOCS algorithm and
MOPSO algorithm, we select the solutions that meet the
specified constraint from the solutions they generate as the
ultimate Pareto solutions. For the NSGA-II algorithm, in each
iteration, after performing fast nondominated sorting and
crowding distance sorting, we select solutions whose execution
reliability is higher than the given constraint. If the total number
of solutions that meet the given constraint is less than the
population size, the solutions with higher reliability will be
selected in order of their reliability and added to the population.

In this subsection, our main focus is to determine
whether the improved algorithms are able to obtain solutions
that satisfy reliability constraints. Tables 2–6 display the exe-
cution reliability of solutions obtained using the five algo-
rithms mentioned above. It can be found that at each
application scale, all solutions satisfy the given reliability
constraint Rgiven because the minimum reliability Rmin is
higher than the given constraint.

6.2. Comparison of Pareto Frontiers and Performance
Metrics. Figure 2 shows the Pareto frontiers obtained by vari-
ous multiobjective optimization algorithms for DAG applica-
tions of sizes 400, 500, 600, and 700KB, respectively. It can be
found that the Pareto frontiers obtained by RCMOCS are
superior to those of other algorithms. In other words, task
scheduling solutions obtained through RCMOCS are able to
complete an application faster while consuming relatively less
energy. RCMOCS provides users with more scheduling
choices, as it offers the most scheduling solutions.

Pareto frontiers obtained by MOCS are the closest to
those of RCMOCS, and the solutions on the Pareto frontiers
are also widely distributed. But obviously, our proposed

TABLE 2: Execution reliability of Pareto solutions obtained by
RCMOCS.

Application scale (KB) Rgiven Rmin Rmax

400 0.99695 0.99696 0.99796
500 0.99729 0.99731 0.99835
600 0.99675 0.99701 0.99796
700 0.99621 0.99625 0.99774

TABLE 1: Parameters of the considered MEC system.

Parameters Values

Minimum distance between UE and MEC
servers

100m

Uplink bandwidth 20MHz
Noise power −100 dBm
Path loss index 4
CPU frequency of UE 1GHz
Transmission power of UE 100mW
CPU frequency of MEC servers [2, 7] GHz
Size of DAG applications [400, 700] KB
CPU cycles required per bit task 50
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RCMOCS achieves better task scheduling schemes without
increasing the complexity of the algorithm. This is due to the
fact that we improve the update method of Lévy flight, intro-
duce an external archive, and enhance the evolutionary pro-
cess of the population. These enhancements help to identify a
greater number of potential optimal solutions within a larger
and more optimal range. As a result, the performance of
Pareto-optimal solutions is improved. As a result of mechan-
isms such as the fast nondominated sorting approach and
crowding distance sorting, NSGA-II is able to obtain solu-
tions with better uniformity. Through combining the advan-
tages of MOCS and NSGA-II, the RCMOCS is capable of
obtaining higher quality solutions. Due to the stronger
search capability of CS compared to PSO and numerous
improvements, RCMOCS achieves Pareto-optimal solutions
with superior performance to MOPSO. As the Random algo-
rithm schedules subtasks to processors randomly, it often
produces suboptimal scheduling solutions.

In order to compare the quality of the Pareto-optimal
solutions obtained by different algorithms, the convergence
and uniformity of the Pareto solutions are analyzed using the
Q metric and S metric.

Tables 7–10 display the Q metrics and S metrics for all
algorithms considered. From the values of the second row in
these four tables, it can be concluded that RCMOCS per-
forms the best in terms of convergence.

In addition, the Pareto-optimal solution sets obtained by
RCMOCS correspond to the smallest S metrics, which indi-
cates that it is capable of generating solutions that have the
most uniform distribution on Pareto frontiers. Simulation
results above show that our proposed RCMOCS algorithm
is quite effective. It obtains a series of tradeoff solutions
between execution latency and energy consumption of the
entire MEC system, with better performance under the con-
straint of execution reliability.

6.3. Impact of Distance on Pareto Frontiers. In an MEC sys-
tem, the execution latency of a DAG application and the
energy consumption of the entire system are closely linked
to the distance between UE and MEC servers. Therefore, the
following is a simulation analysis on the influence of distance
on Pareto-optimal solutions. In this part of the experiment, we
assume that there is a DAG application with a size of 700KB
and 16 subtasks. The minimum distance between UE and

TABLE 3: Execution reliability of Pareto solutions obtained by MOCS.

Application scale (KB) Rgiven Rmin Rmax

400 0.99695 0.99698 0.99801
500 0.99729 0.99751 0.99836
600 0.99675 0.99705 0.99794
700 0.99621 0.99646 0.99777

TABLE 4: Execution reliability of Pareto solutions obtained by MOPSO.

Application scale (KB) Rgiven Rmin Rmax

400 0.99695 0.99696 0.99817
500 0.99729 0.99751 0.99848
600 0.99675 0.99688 0.99803
700 0.99621 0.99627 0.99802

TABLE 5: Execution reliability of Pareto solutions obtained by NSGA-II.

Application scale (KB) Rgiven Rmin Rmax

400 0.99695 0.99696 0.99772
500 0.99729 0.99746 0.99834
600 0.99675 0.99681 0.99792
700 0.99621 0.99631 0.99749

TABLE 6: Execution reliability of Pareto solutions obtained by Random algorithm.

Application scale (KB) Rgiven Rmin Rmax

400 0.99695 0.99697 0.99811
500 0.99729 0.99734 0.99866
600 0.99675 0.99689 0.99828
700 0.99621 0.99621 0.99785
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FIGURE 2: Pareto frontiers under different sizes of DAG applications: (a) size=400KB, (b) size=500KB, (c) size= 600KB, and (d) size=700KB.

TABLE 7: Performance comparison while the application’s size is 400KB.

Q metric RCMOCS MOCS MOPSO NSGA-II Random

RCMOCS — True True True True
MOCS False — False False False
MOPSO False True — False True
NSGA-II False True True — True
S metric 0.00210 0.03391 0.00922 0.00219 0.01048
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MEC servers is set to (0, 100], (100, 300], and (300, 500]m,
respectively.

Figure 3 demonstrates the Pareto frontiers obtained by
our proposed RCMOCS algorithm. As the minimum dis-
tance between UE and MEC servers increases, the resulting

Pareto frontier gradually moves to the right. This is because,
the longer distance consumes more time and energy. Besides,
the RCMOCS algorithm tends to choose more MEC servers
to perform the DAG application together when the distance
between UE to MEC servers is relatively close, which
explains why solutions on the black Pareto frontier are the
most dispersed among three frontiers.

7. Conclusion

In this paper, we consider a scenario inwhich there is a single UE
andmultiple heterogeneousMEC servers. We focus on practical
applications that are modeled as DAGs, and aim to optimize the
execution latency and energy consumption of aDAGapplication
within the entire MEC system, while also satisfying a given
execution reliability constraint. Based on our previous work
and considering the reliability constraint, we propose the
RCMOCS algorithm. This algorithm improves the initialization
process and the update strategy of the external archive. Simula-
tion experiments demonstrate that the proposed RCMOCS task
scheduling algorithm achieves Pareto-optimal solutions with
better convergence and uniformity than the comparison algo-
rithms, while also considering reliability constraints. Finally, we
also investigate the impact of the distance between the UE and
MEC servers on the Pareto solutions. The future work will focus
on optimizing DAG task scheduling problems inMEC scenarios
with multiple users and multiple MEC servers. With the vigor-
ous development of the internet of vehicles and vehicle-edge

TABLE 9: Performance comparison while the application’s size is 600KB.

Q metric RCMOCS MOCS MOPSO NSGA-II Random

RCMOCS — True True True True
MOCS False — True False True
MOPSO False False — False True
NSGA-II False True True — True
S metric 0.00437 0.00681 0.00958 0.00610 0.01884

TABLE 10: Performance comparison while the application’s size is 700KB.

Q metric RCMOCS MOCS MOPSO NSGA-II Random

RCMOCS — True True True True
MOCS False — True False True
MOPSO False False — False True
NSGA-II False True True — True
S metric 0.00445 0.00721 0.02949 0.00475 0.03426
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FIGURE 3: The impact of minimum distance between UE and MEC
servers on Pareto solutions.

TABLE 8: Performance comparison while the application’s size is 500KB.

Q metric RCMOCS MOCS MOPSO NSGA-II Random

RCMOCS — True True True True
MOCS False — False False True
MOPSO False True — False True
NSGA-II False True True — True
S metric 0.00216 0.00506 0.01215 0.00320 0.01383
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computing, combined with our research on task scheduling and
intelligent optimization algorithms, we can also take content
distribution technology [44, 45] as one of the new directions.
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