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Data collection and energy consumption are critical concerns in Wireless sensor networks (WSNs). To address these issues, both
clustering and routing algorithms are utilized. Therefore, this paper proposes an intelligent energy-efficient data routing scheme for
WSNs utilizing a mobile sink (MS) to save energy and prolong network lifetime. The proposed scheme operates in two major
modes: configure and operational modes. During the configure mode, a novel clustering mechanism is applied once, and a
prescheduling cluster head (CH) selection is introduced to ensure uniform energy expenditure among sensor nodes (SNs). The
scheduling technique selects successive CHs for each cluster throughout the WSNs’ lifetime rounds, managed at the base station
(BS) to minimize SN energy consumption. In the operational mode, two main objectives are achieved: sensing and gathering data
by each CH with minimal message overhead, and establishing an optimal path for the MS using the genetic algorithm. Finally, the
MS uploads the gathered data to the BS. Extensive simulations are conducted to verify the efficiency of the proposed scheme in
terms of stability period, network lifetime, average energy consumption, data transmission latency, message overhead, and
throughput. The results demonstrate that the proposed scheme outperforms the most recent state-of-the-art methods significantly.
The results are substantiated through statistical validation via hypothesis testing utilizing ANOVA, as well as post hoc analysis.

1. Introduction

Wireless sensor networks (WSNs) are made up of several
resource-constrained sensor nodes (SNs). The SNs are used
to sense the physical environment around them and transmit
their sensory data to the base station (BS) [1]. Unlike SNs, the
BS has substantial resources. So, it gathers data, analyze it, and
then sends the useful information via the internet to the cloud
server or end user [2]. Nowadays, WSNs technology has
became smart and can be exploited for different functionalities:
intercommunication, decision-making ability, military surveil-
lance networks, tracking the objects’ movements and their
speeds, and monitor critical circumstances, such as tempera-
ture, humidity, and pressure [3–6]. In Jain et al.’s [7] study, the
authors survey hierarchical routing protocols in WSNs with
mobile sink (MS), focusing on event-driven and query-driven
scenarios. They discuss the challenges of sink mobility and the
need for tailored routing protocols based on application

requirements. The paper provides a comparative analysis of
these protocols, highlighting their functionalities, advantages,
and performance parameters.

One of the main protective aspects in the WSN architec-
ture of SNs is to avoid the probable breach of cyber criminals.
Attackers may try to amend the behavioral pattern of normal
SNs through different types of attacks: eavesdropping, the
node capture, and spoofing attacks. So, securing the routed
aggregated data from SNs to the sink is one of the most
imperative issues. Generally, the sensors of wireless network
may expose to an adversary breaches by sensing the wireless
channel and capturing the data being transferred in an unau-
thorized manner. In Okine et al.’s [8] study, the authors
present a novel approach for routing in tactical wireless sen-
sor networks (T-WSNs) used in military operations. These
networks face unique challenges like jamming attacks, which
disrupt data communication and complicate packet routing.
The proposed solution utilizes distributed multiagent deep
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reinforcement learning to overcome these challenges and
find reliable routes while meeting strict delay and energy
requirements. It considers factors such as hop count, one-
hop delay, packet loss rate, and energy cost in action reward
estimation. Comparative analysis shows that the proposed
scheme outperforms existing algorithms in terms of packet
delivery ratio, packet delivery time, and energy efficiency,
making it a promising solution for routing in T-WSNs under
jamming attacks.

However, WSNs are often established in an inaccessible
environment, and the SNs suffer from the batteries limitation
which cannot be charged or replaced [9, 10]. According to
these limitations, energy preservation is a vital aspect in the
creation of an effective routing protocol. In addition, the
extending of lifetime of the WSNs are precisely associated
with the SN’s battery life [11]. For the design of an effective
routing protocol, several goals should be achieved: minimize
the consumed energy, maximize the packets delivery ratio,
enhance throughput, extending network lifetime, and decline
computational overhead. It is recognized that creating rout-
ing protocol is based on two aspects: an efficient clustering
method and using MS to communicate to the BS. The
achievement of the aforementioned goals is significantly
impacted by these factors [12]. So, several research has
been performed on the energy saving of the SNs [13, 14].

The present energy-saving methods partition the entire
network area into distinct clusters. Each cluster has a cluster
head (CH) [15]. The major role of a CH is to gather the
sensory data from its cluster members (CMs) and send it
to the BS, which considerably expands the lifetime of the
networks. However, the main drawback of the applied clus-
tering techniques is caused by the SNs nearer to the CH.
These SNs send more packets than the distant SNs. So,
they are exposed to the premature death. This problem is
resolved by two strategies: first repartition the observing area
into several separated network segments that may not be able
to communicate with the BS causing poor network perfor-
mance [16]. Second, some clustering-methods turn the CH
role on all sensors to distribute the energy consumption
among the CMs. But the current approaches need massive
overhead messages which causes transmission delays and
affects the networks performance. The presented approaches
have been performed using heavyweight work to resolve
routing problems (e.g., heuristic and meta-heuristic-based
routing algorithms).

These approaches are designed without considering the
mentioned limitations [17]. Moreover, some of the approaches
may not be scalable with respect to the network size. So, the
presented approaches suffer when applied in real-environment
WSNs [18]. Recently, several approaches have emerged employ-
ingMS for data gathering from the deployed SNs [17]. Next, MS
delivers the gathered data to the sink. This leads to decreases the
energy consumption of SNs and expands the lifetime of the
WSNs [19]. MS-based approaches can be classified into two
types [20]. In the first type, MS passes to each SN, gathering
its data, and finally send the gathered data of the whole SNs to
BS. This strategy reduces the energy consumption of SNs and
balances the energy utilization among them. But the data

collected from each SN causes great data gathering latency and
leads to buffer overflow within each SN. The second type
employs rendezvous points (RVPs) strategy to overcome the first
type of problem. The RVPs are positioned within the WSNs
such that the MS visits these positions to acquire the data
from SNs/CHs. However, this strategy suffers from the massive
message overhead (MO) to find RVPs within the WSNs. More-
over, it does not consider energy balancing among the SNs,
which causes the premature death of the WSNs.

The proposed work’s significant contribution can be
summed up as follows:

(1) This paper presents an intelligent energy-efficient
data routing scheme for WSNs utilizing MS which
aims to balance the consumed energy through the
anticipated operations in the WSNs topology.

(2) The proposed work further proposes a minimum data
gathering tour for MS that considerably decreases the
data collecting time and enhances the overall perfor-
mance of the networks.

(3) Furthermore, the proposed scheme constructs a pre-
scheduling map to make the spent energy by each SN
approximately the same as the remaining SNs or as
near as to be the same as other SNs.

(4) The proposed work introduces a clustering mecha-
nism to divide the monitoring area into equal-size
clusters in the configure mode and before enabling
the topology operations.

(5) In addition, a modified time division multiple access
(TDMA) is presented to assign a constant and
ordered slot time for each sensor during its sensing
operation. Moreover, the CHs operations are distrib-
uted among sensors in prescheduled order through
configure mode.

(6) Additionally, the proposed scheme adds a better
mechanism that enables each SN to self-activate as
a CH in its order without the use of extra communi-
cation messages.

(7) The genetic algorithm (GA) is utilized for MS trajec-
tory optimization.

(8) Statistical validation of the comparative results is fur-
ther conducted utilizing ANOVA and subsequent
post hoc analysis.

The proposed scheme offers versatile applications across
diverse real-world scenarios. In precision agriculture, the scheme
optimizes data gathering tours, enabling efficient monitoring of
soil conditions and crop health. This aids farmers in making
informed decisions regarding irrigation and fertilization. Addi-
tionally, in wildlife monitoring applications, the MS navigates
through wildlife habitats, collecting data on animal behavior and
environmental conditionswithout causing disruptions. In indus-
trial automation, the scheme enhances efficiency by optimizing
data collection in manufacturing processes. It minimizes the
time required for gathering critical data, improving decision-
making in control systems. For smart cities infrastructure, the
MS strategically collects data from SNs in urban environments,
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optimizing city management systems, and reducing response
times. Healthcare monitoring benefits from the scheme’s effi-
cient data collection, ensuring timely and accurate health
monitoring in both hospital and remote patient care settings.
Furthermore, in environmental monitoring, the scheme’s
adaptability allows it to navigate challenging terrains, opti-
mizing data collection for climate and ecological research.
Overall, these scenarios highlight the scheme’s broad applica-
bility, showcasing its potential impact in addressing energy
efficiency and performance challenges in WSNs across vari-
ous real-world.

The original source of this paper under different title is
available at SSRN [21]. The outstanding paper is organized as
follows: Section 2 describes the related work, Section 4 illus-
trates the proposed scheme in details. Section 5 depicts the
performance evaluation and the experimental results. Finally,
the paper conclusion is presented in Section 6.

2. Related Work

Several approaches are focused on clustering technique and
energy-aware routing protocol for MS in WSN [22]. How-
ever, most of these approaches have heavyweight processes
in resolving WSN clustering and dealing with MS problems.
This section offers a brief literature review of the presenting
attempts for both clustering and MS-based data gathering. In
Huang and Savkin’s [23] study, an unequal-sized cluster-
based routing protocol is presented to perform data gather-
ing in WSNs. The proposed protocol tries to balance energy
consumption across the network to extend the lifetime of all
nodes as much as possible. It allows MS to go along a fixed
mobility model to collect the data from the CH. Moreover,
this protocol chooses relay CH for the optimum data trans-
mission. However, this protocol also has some issues when
the hot spot/energy-hole issue is close to the trajectory of the
sink. In Mehto et al.’s [24] study, the authors introduce
TARA, an efficient trajectory planning and route adjustment
approach designed forWSN-assisted Internet of Things (IoT)
environments. It addresses the challenge of efficient data
transmission and collection in WSNs, where IoT devices
face resource constraints such as limited energy, computing
capabilities, and storage availability. TARA divides the
deployment region into a uniform grid, identifying optimal
rendezvous grid-cells forMS data collection. It reduces energy
consumption by 10%− 18% and delay by 15%− 24% com-
pared to state-of-the-art techniques.

Wen et al. [25] suggested an energy-aware path construc-
tion (EAPC) algorithm for WSNs. The algorithm selects a
few RVPs within the network and builds a route between
them. At those points, MS gathers huge amounts of data.
EAPC is planned to extend the network lifetime and com-
pute the traveling cost from one point to another. However,
this algorithm suffers from excess transmission delays and
network partition problems. In Wang and Chen’s [26] study,
an efficient path planning scheme for MS data gathering in
WSNs is introduced. It aims to reliably gather data from
sensors of diverse sensing rates. This scheme utilizes both
hop distance and the amount of data collected by the SNs to

select RVPs within the network. This scheme defines many
RVPs that considerably maximize the data gathering time
and lead to a buffer overflow.

Fu and He [27] presented a balanced inter-cluster and
inner-cluster energy (BIIE) algorithm for WSNs. In this
method, a local reclustering mechanism is used to balance
the energy consumption within each cluster based on the resid-
ual energy of its sensors. In addition, the method provides a
mechanism to select a very few RVPs to serve several CHs.
These preferred RVPs are used to build the MS’s trip path
for gathering data. However, the use of very few RVPs leads
to maximizing the data gathering time and causing the buffer
overflow problem. In Mehto et al.’s [28] study, squirrels search
algorithm based rendezvous points selection (SSA-RVPS) is
introduced for the MS to reliably acquire data from WSNs.
The SSA-RVPS aims to extend the network lifetime by reduc-
ing the trajectory length of MS to gather SNs data generation
with different rates. However, the SSA-RPSmay implement the
reselection of RVPs to ensure a balanced energy distribution
among SNs. The main drawback of the SSA-RPS is the loss of
data due to the buffer overflow. This occurred when RVPs
received more data packets than their available buffer space.

Gutam et al. [20] offered an optimal RVPs selection
method to construct MS trajectory for data collection in
WSNs (ORPSTC). Initially, authors implement the minimal
cost spanning tree (MST) to construct the intended clusters.
Next, each CH is identified, and the RVP is also selected for
each cluster. ORPSTC created an efficient trajectory for the
MS using a low-computation geometry algorithm called MS
trajectory construction (MSTC). Through the MS tour,
virtual-RVPs (VRVPs) are defined for the SNs that have
adequate communication range to connect directly to the
MS. However, the VRPS communicates their data to the
closest RVPs if the MS becomes out of their communication
range. Despite the deduced path considering the sequence of
the RVPs locations to improve the data collection, the
intended path may not be the shortest one.

Agarwal et al. [29] proposed an intelligent data routing
technique for WSNs based on MS for data collection. They
employ particle swarm optimization (PSO) for the optimal
cluster formation. Next, the RVPs are evaluated based on the
average of all the X–Y coordinates of the SNs of each region.
Finally, they utilize these RVPs to draw the MS path for data-
gathering tour. The main disadvantage of this approach is
the evaluation of the RVPs without any consideration for the
actual position of the CHs. In addition, the proposed scheme
is not appropriate when employing disconnected networks.

Singh et al. [30] suggested a genetic algorithm for sink
mobility technique (GA-SMT). This approach partitions the
entire network area into various small-sized regions and picks
out RVP for each region using the GA process. Moreover, it
employs a vast number of messages to handle and manage
small-sized regions which maximizes the consumed energy
and decreases the network lifetime. In Sahoo et al.’s [31] study,
both GA and PSO are merged in a hybrid algorithm known as
GAPSO-H. This algorithm is employed for routing on SM and
CH selection. SM has been performed by the PSO algorithm
but fails to apply the fitness parameters for routing.
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In Wang et al.’s [32] study, another hybrid approach
based on the PSO, and the GA is utilized to construct a
path scheduling technique. This approach is based on the
coverage rate of multiple MSs (TSCR-M). In TSCR-M, the
RVPs are primarily established by an enhanced PSO algo-
rithm that reflects sensor coverage and overlapped coverage
rates. Next, GA is applied to select the most reasonable route
for MMSs. However, the GA fails in addressing the perma-
nence period of the network. Gowda and Jayasree [33]
offered a group teaching algorithm by using the Bald Eagle
(GTA-BE) routing scheme of WSNs. In this methodology,
clusters are created through the mean shift clustering
method. The new Bald Eagle Search mechanism is employed
to select the CHs while RVPs are determined based on the
number of transferred data packets and hop distance. In the
end, a hybrid neural network is engaged with group teaching
algorithm to select the optimal path between SNs and RVPs.
The main shortcoming of this algorithm is that it endures
massive MO and transmission delay.

Kumar et al. [34] offered ant colony optimization-based
MS path determination (ACO-MSPD) scheme for WSNs.
This scheme seeks to select the optimal CHs to meet the delay
requirements and balance the energy consumption of the SNs.
Moreover, It restricted the maximum touring distance of the
MS and chosen the number of RVPs that did not surpass the
threshold value of theMS tour. However, this scheme endures
high computational complexity. Donta et al. [35] presented an
extended ACO to construct MS path for event-driven WSNs.
In this attempt, the maximum distance of theMS tour is fixed,
and the RVPs are selected according to the SNs data genera-
tion rate. However, the RVPs selection is performed due to
threshold value. In addition, each RVPs selection remaining
used and changes only when the SNs data generation rate is
changed. The main disadvantage of this approach is the huge
amount of time consumed to select RVPs.

Gupta and Saha [36] offered a hybrid meta-heuristic
algorithm-based data routing method for WSNs. Both artificial
bee colony and differential evolution (ABC-DE) mechanism are
employed to balance the energy spending among the CHs.
Besides, a MS-based data collection was performed to gather
the data from CHs. However, this algorithm suffers from a
minimal convergence rate and decline of the network lifetime.
Furthermore, the SNs consume very high energy, which reduces
the overall performance of the networks. In Raj et al.’s [37] study,
the drawback of constructing a consistent and intelligent route
for MS is addressed utilizing game theory and improved ACO-
based MS route choice and data gathering (GTAC-DG)
approach. The MS route is structured applying an ACO-based
algorithm employing the selected (RVPs). Though the GTAC-
DG algorithm creates a convincing route for MS and constrains
the use of multihop data transfer. But the main drawback is the
ignoring of the CH selection process. Tables 1 and 2 provide an
overview of the related work.

3. Network Model

In the proposed scheme, WSN topology is divided into a set
of clusters. Each cluster compromises a number of SNs. As

shown in Figure 1, each SN has many features: sensing unit,
processing system, and communication system. Sensing unit
include sensor device and global positioning system (GPS).
Sensor device is employed to sense physical event or phe-
nomenon and then send the gathered information to the CH
node. GPS is used to get the required knowledge of location
with high accuracy. The processing unit embraces microcon-
troller unit (MCU) and memory and the required operating
system. The MCU executes self-coding process and the nec-
essary computation on the collected data when employed as
a CH. Transceiver is a broadband–radio communication sys-
tem to transmit the gathered data among nodes and their
CH, and then between CH and MS. Finally, power unit is a
battery to provide energy for SN and optional components.
However, the architecture of the SNs suffers from the small
size and low power, appropriate locations.

In the following subsections, assumptions related to SNs
and MS are presented. Moreover, the energy consumption of
the radio model applied in the intended WSN is also
declared.

3.1. Network Assumptions. In the proposed work, as shown
in Figure 2, N SNs are deployed randomly in a given geo-
graphical area A with width X and height Y . This area is
managed by a MS, that is responsible to collect the sensory
data from SNs. The following assumptions are made about
the WSN under consideration:

(1) S¼fsi∣1≤ i≤Ng: represents a set of homogeneous
SNs deployed over A, where battery recharging or
replacement for each SN is not probable.

(2) Each SN si 2S has a 2D position ðxi; yiÞ : in the region
A, which is determined after deployment using its
built in GPS.

(3) Each SN si 2S has a transmission range r and can
communicate with another SN sj if the Euclidean
distance dij ≤ r, where:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xj
À Á

2 þ yi − yj
À Á

2
q

: ð1Þ

(4) A stationary BS with infinite energy supply collects
data from the MS every round.

(5) The area A is divided into a number of equal-sized
clusters. Each cluster has a number of SNs known as
CMs with each cluster having a head, called the CH,
which serves as a local sink for the SNs of the cluster.
The CH is used to aggregate the sensory data from
the CMs.

(6) An MS with a sufficient amount of battery life and
computational capacity is used to gather data from
SNs in subsequent rounds. In fact, the MS hovering
over the WSN and visiting a selected set of positions
called RVPs.

(7) The MS is traveling at a constant speed c m/s during
each round.
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(8) Based on the MS’s position, the CHs modify their
transmission range to fit within the MS’s range.

(9) All SNs have the same initial energy EI joule. If there
is not enough power remaining to transmit a packet
to the CH, the SN will be deemed dead.

3.2. Energy Model. In this paper, the energy consumption of
SNs is assessed using the first-order radio energy model [38].
Normally, the SN’s energy is dissipated during data sensing,
processing, transmission, and reception, as well as analog to
digital converters. At receivers, the SNs dissipate energy for
radio electronics, whereas at transmitters, they dissipate
energy for radio electronics and power amplifiers. Let the
transmitter or receiver dissipates Ee energy per bit in its
circuit. Typically, channel coding, modulation, filtering,

and spreading have an impact on Ee. Let Ef and Em represent,
respectively, the energy needed to send a bit over a given
distance in free space and a multipath fading channel. The
transmission distance threshold d0 is given as follows:

d0 ¼
ffiffiffiffiffiffi
Ef
Em

s
: ð2Þ

The dissipated energy ETXðn; dijÞ : for transmitting n-bit
over distance dij between SNs si and sj is expressed as follows:

ETX n; dij
À Á¼ n × Ee þ Ef × dij

À Á
2

À Á
; dij<d0

n × Ee þ Em × dij
À Á

4
À Á

; dij ≥ d0

(
: ð3Þ

The dissipated energy to receive a n-bit at a SN is given as
follows:

ERX nð Þ ¼ nEe: ð4Þ

The dissipated energy at a given CH due to aggregating
n− bit from k SNs is given as follows:

Eagg k; nð Þ ¼ kERX nð Þ: ð5Þ

The dissipated energy at a given CH consists of three
components: receiving, aggregating, and transmitting. Based
on Equations (3)–(5), the total consumed energy of a given
CH in each round is given as follows:

ECH ¼ kERX nð Þ þ Eagg k; nð Þ þ ETX p; dHSð Þ; ð6Þ

where p and dHS denoting the data payload and the Euclid-
ean distance from a CH to the MS, respectively.

4. The Proposed Scheme

In the envisaged scheme, a significant portion of computa-
tions and communications is alleviated from both SNs and
CHs, being instead transferred to the MS and BS. This
scheme operates in dual modes: configure and operational
modes. The configure mode is specifically designed to carry

aSensing unit
(data gathering/processing) GPS

Microcontroller
(embedded OS and memory)

Transceiver unit
(communication)

Power unit to all component 

FIGURE 1: SN architecture.

∗ ∗

∗ ∗

X

X

RVP
GMP

X

X

BS

MS
...

M
S...

X

Y

CH

SN

FIGURE 2: The conceptual structure of the considered network
topology.
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out the necessary calculations operations to reduce the con-
sumed energy when the topology is running. Therefore, the
necessary information are available to both BS and MS. On
the other hand, the operational mode is employed to achieve
two main objectives: performing the minimum mandatory
operations for topology running and establishment of an optimal
route for the MS to upload the gathered data from the CHs.

4.1. Configure Mode. The configure mode is a pivotal aspect
of our proposed scheme, where the computational burden is
centralized at the BS. This approach ensures that SNs and the
MS are not overwhelmed with continuous computational
tasks, thereby minimizing the impact on their resources
and energy consumption. As illustrated in Figure 3, the con-
figure mode comprises three consecutive processes: cluster
construction, TDMA scheduling, and the selection of CHs.

4.1.1. Cluster Construction. This process presents a novel
method of portioning the monitoring geographical area A
into an even number of equal-size clusters, where w and h
denoting width and height of any generated cluster. The BS
organizes the generated clusters in rows and columns, where
the number of clusters in each row and columnmust be even.
As shown in Figure 4, initially, the BS assumes that the initial
height hI and width wI of each cluster is calculated based on
the transmission range R as follows:

wI ¼
ffiffiffiffiffiffi
0:5

p
R; ð7Þ

and

hI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

− w2
I

p
: ð8Þ

To ensure that the number of generated clusters is even
in each row and column directions, the BS calculates h and w
for each cluster based on Equations (7) and (8). Let n1 be an
integer number given as follows:

n1 ¼
X
wI

� �
; ð9Þ

where ⌊x⌋ denotes the floor of x. Let B1 be a binary variable
defined as follows:

B1 ¼
1; if

X
wI

− n1

� �
¼ 0

0; otherwise

8>><
>>: : ð10Þ

Using Equations (7)–(10), the value of w is recalculated
as follows:

w¼
wI þ

X − n1 × wIð Þ½ �
n1

� �
; n1 even

wI −
B1 × wI

n1

� �
−

1 − B1ð Þ wI − X − n1wI½ �ð Þð Þ
n1 þ 1ð Þ

� �
; n1 odd

8>>>><
>>>>:

:

ð11Þ

The term ðB1×wI
n1

Þ : reduces the width of each cluster for mak-
ing room to add another cluster. Equation (11) guarantees an
even number of clusters per row. In similar way, the number of
clusters in each column can be adjusted to even number as
follows. Let n2 be an integer number given as follows:

n2 ¼
Y
hI

� �
: ð12Þ

Let B2 be a binary variable defined as follows:

B2 ¼
1; if

Y
hi
− n2

� �
¼ 0

0; otherwise

8>><
>>: : ð13Þ

Using Equations (8), (12), and (13), the value of h is
recalculated as follows:

h¼
hI þ

Y − n2 × hIð Þ½ �
n2

� �
; n2 even

hI −
B2 × hI
n2

� �
−

1 − B2ð Þ hI − Y − n2hI½ �ð Þð Þ
n2 þ 1ð Þ

� �
; n2 odd

8>>>><
>>>>:

:

ð14Þ

This leads to an even number within each column for
constructed clusters. The total number of generated clusters
M within the area A is given as follows:

M ¼

n1 × n2; n1 even; n2 even

n1 × n2 þ 1ð Þ; n1 even; n2 odd

n1 þ 1ð Þ × n2; n1 odd; n2 even

n1 þ 1ð Þ × n2 þ 1ð Þ; n1 odd; n2 odd

8>>>><
>>>>:

: ð15Þ

Its clear thatA ¼ M × h×w. LetC ¼ fCi∣1≤ i≤Mg: be
the set of generated clusters from the cluster construction
process. After clusters are formed, start from left to right and
up to bottom of the clusters topology, each four adjacent
clusters forms a group, as shown in Figure 4. Let G ¼
fGi∣1≤ i≤M

4 g : be the set of the generated groups, where

SNs set Clustering Cluster set TDMA
scheduling

Frame slot CHs selecting CHs set

FIGURE 3: The three configure mode processes.
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Gi ¼ fCik∣1≤ k≤ 4g: and Cik denoting the cluster number k
within groupGi. Each Cik 2Gi is withNik SNs. It is clear that:

N ¼ ∑
M
4

i¼1
∑
4

k¼1
Nik: ð16Þ

The vertices meeting point of the 4-clusters within each
group represent the group meeting positions (GMPs), where
mi represents the GMP of the group Gi 2G.

4.1.2. TDMA Schedule. Originally, WSNs employ broadcast
communication in which multiple devices may emit signals
simultaneously, leading to collisions and signal destruction.
To address this issue, TDMA is employed as a scheduling
algorithm to coordinate a group of SNs in transmitting their
data within a predetermined frame. This frame is partitioned
into equal time slots, allocating one slot to each SN for trans-
mission [15].

The proposed scheme intended to reduce the sources of
energy loss and reducing the gap of residual energy among all
SNs in each cluster. As aforementioned, each Cik 2Gi has Nik
SNs deployed in its area, where one of them is selected as a
CH as illustrated in the next section. At the BS, a TDMA
scheduling is modified to define a frame fik of equal time slots
for each cluster Cik 2Gi, where i¼ 1; 2; 3;…M

4 and k¼ 1; 2;
3; 4. The number of time slots in each fik is equivalent to the
number of SNs Nik, where each slot is associated with only
one SN sj 2Cik ðj¼ 1; 2; 3;…;NikÞ :. This means the frame’s
length of each cluster is different according to its number of
SNs. On the operational mode and for each round, the SN
sj 2Ci has one chance to transmit its sensed data to the CH
according to its order in the frame fi. In some cases, the frame
length is greater than the number of active SNs in the cluster.
This case has happened when some of the SNs within its
cluster are dead. In the traditional TDMA scheduling, when
the frame length is greater than the number of SNs, some of
them take more than one chance to transmit their data in the

same round. In such a case, the power of SN is drained
quickly. To prevent the SN from sending data more than
once, the SN sj 2Cik switches to sleep mode once it sent its
data within its associated slot and then switches to wakeup
mode in the next round. Once the TDMA scheduling frame
fik is formed at the BS, the BS broadcasting fik to all SNs
within Cik at the first round only.

4.1.3. Cluster Head Selection. Up to best literature review, the
computation processing to select the optimal CH is generally
performed among the SNs of each cluster. So, the SNs are
exposed to lose some of a significant energy due to the high
overhead communication between them. The proposed scheme
introduces a novel approach that breaks theCH selection process
for each cluster into two stages. The first stage is implemented
initially at the BS and contains themost computation processing
of the CHs selection, The second stage is implemented during
the operational mode.

In the first stage, the BS executes the CH scheduling
Algorithm 1 for all clusters in parallel processing. In this
algorithm, for each group Gi 2G and for each cluster
Cik 2Gi, the distance dij between SN sj 2Cik ðj¼ 1; 2; 3;…;
NikÞ : and the GMP mi is computed as follows:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj − xi
À Á

2 þ yj − yi
À Á

2
q

; ð17Þ

where ðxj ;yjÞ : and ðxi; yiÞ : denote the positions of the SN sj 2
Cik and the GMP mi. The intradistances among the SN sj 2
Cik and remaining SNs within the cluster Cik is given as
follows:

djw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj − xw
À Á

2 þ yj − yw
À Á

2
q

; ð18Þ

where 1≤w≤Nik and w ≠ j. For SN sj 2Cik, let dTj the total
calculated distances for SN sj 2Cik which given based on
Equations (17) and (18) as follows:

dTj ¼ dij þ ∑
Nik

w¼1;w≠j
djw: ð19Þ

Construct the cluster descending order vector Eik cosponsor-
ing to the SNs within the cluster Cik 2Gi:

Eik ¼ ID1; e2ð Þ; ID2; e2ð Þ; ID3; e3ð Þ;…; IDNik
; eNik

À ÁÀ Á
;

ð20Þ

which orders the SNs within its cluster based on their total
distances dTj given in Equation (19). In particular, ej ¼ 1
means the SN sj 2Cik with identification IDj has first smallest
total distance dTj . ej ¼ 2 means the SN sj 2Cik with identifi-
cation IDj has the second smallest total distance dTj . The
order variable ej within the vector Eik represents the order
of SN sj 2Cik to work as a CH. Algorithm 1 illustrates the
formulation of the CH selection order vector Eik in the first
stage. Finally, the BS constructs a message containing the

GMP GMP GMP GMP

1 2

34

1 2

34

1 2

34

1 2

34
X

Y

GMP GMP GMP GMP

1 2

34

1 2

34

1 2

34

1 2

34

wI =   0.5r

h I
 =

   
 r2  –

 w
I2   

R

SN
Initial cluster

CH

FIGURE 4: Square-shaped clusters arranged into M
4 groups. Each group is

made up of four neighboring clusters with numbers from 1…4.
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vector Eik and sends it to all SNs within the cluster Cik 2Gi.
For Cik 2Gi, the SN sj 2Cik is selected to be as a CH in the
first round if ej ¼ 1, where i¼ 1; 2; 3;…M

4 , k¼ 1; 2; 3; 4, and
j¼ 1; 2; 3;…;Nik. Actually, the scheduled CH Algorithm 1
gives each SN a chance to be a CH at specific round, where a
SN is selected as a CH based on the mapping between vector
Eik and round number. This relation will be clarified and
explained through the sensor’s self-encoding module (SEM)
in the operationalmode which represents the second stage of
the CH selection process.

4.2. Operational Mode. This mode is executed in successive
globel round R¼ 1; 2; 3; 4;…. When activated, the network
components are waking up to perform the required opera-
tions for the data routing trip from each SNs up to BS. This
trip is consists of CH activation process and the MS trajec-
tory planning process.

4.2.1. CH Activation Process. Initially and only once, for each
Cik 2Gi, the BS send a set of wakeup messages to all SNs
within Cik. This is the first communication message that the
SNs have gotten. The wakeup message composed of two
items: the TDMA scheduling frame fik and the CH selection
order vector Eik which are formed in the configuremode. The
values of fik and Eik are employed by the SEM of all SNs
within Cik to perform the routing operation. In addition,
each SEM fortified by a dedicated local round variable Rik
that defined as the current round which used to count the
number of executed rounds within Cik. Initially, the local
round Rik ¼ 0 for all SN within the cluster Cik 2Gi. When
the globel round R begins (i.e., R¼ 1), Rik is set to 1 by the
SEM of all SNs in Cik.

Based on the vector Eik, the SN sj 2Cik elects itself as a
CH if ej ¼Rik. The election process is executed without any
communications between the SNs themselves or the SNs and

their CHs. As a result, the energy consumption of the net-
work is significantly reduced. As shown in Algorithm 2, the
CH selection is carried out during the operational mode as
follows:

(1) Step 1: If the value of ej 2Eik of a given SN sj 2Cik is
equal to the current round Rik then it employs itself
as a CH while remaining SNs within Cik employ
themself as CMs.

(2) Step 2: After the current CH of Cik collects the sen-
sory data from its CMs and sends it to the MS, it
switches itself to be a CM in the next round.

(3) Step 3: If the current CH is the last SN within the
vector Eik then all SNs within Cik including the CH
itself will reset the value of Rik as follows:

Rik ¼
fikj j; if R  mod   fikj jð Þ ¼ 0

R  mod   fikj j; if R  mod   fikj jð Þ ≠ 0

8><
>: ;

ð21Þ

where jxj : is the cardinality of x. All SNs are then follow Step
1 again.

(4) Step 4: If the current CH is not the last SN within the
vector Eik then all SNs within Cik including the CH
itself will set increase the value of Rik by 1 and follow
Step 1 again.

1: Execute the cluster construction process

2: for Each group Gi 2G do

3: for Each cluster Cik 2Gi do

4: for Each SN sj 2Cik do

5: Calculate dij using 15

6: for Each sw 2Cik and w ≠ j do

7: sum¼ sumþ dij using 16

8: end for

9: Set dTj ¼ sumþ dij
10: push the tuple ðIDj; dTj Þ: into vector Eik.

11: Sort the vector Eik in descending order.

12: for j¼ 1 to Nik do

13: labelling the second item of the pair j in Eik as ej.

14: end for

15: end for

16: Send the vector Eik to cluster Cik 2Gi.

17: end for

18: end for

ALGORITHM 1: The BS scheduled CH process.

1: Execute the cluster construction process

2: for each group Gi 2G do

3: for each cluster Cik 2Gi do

4: for Rik ¼ 1 to Nik do

5: for j¼ 1 to Nik do

6: if ej ¼Rik then

7: Select sj as CH

8: break

9: end if

10: end for

11: Aggregates data at sj
12: Send data to the MS.

13: Switch sj to member state.

14: if Ej ≤Te then

15: Set sj to sleep mode

16: Set the slot of sj to unused mode

17: for r¼ ej þ 1 to Nik do

18: Set er ¼ er − 1

19: end for

20: end if

21: end for

22: end for

23: end for

ALGORITHM 2: CH activation algorithm.
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After reparations of numerous rounds, one or more of
SNs may loss the majority amount of its energy. Let Te be
threshold energy that is enough to enable a SN to work as a
CH. The remaining energy of the SN sj 2Cik at the start of a
given round is denoted as Ej. If Ej is less than Te then the SN
sj 2Cik sends an announce message to all SNs to tell them
about its energy status. Based on this message, the following
actions are executed:

(1) The SN sj 2Cik switches to the sleep mode and its
assigned slot changes to unused slot mode. Any slot
in unused mode can not be used by the other SNs.

(2) All SNs which coming after sj in the vector Eik will
decrease it order ej CH by 1.

To make the CH activation process more understand-
able, we provide the following illustrative example as shown
in Figure 5. In this example, we focus on cluster C11 2G1 and
cluster C32 2G3. Four SNs are deployed in C11 (i.e., N11 ¼ 4Þ :

and six SNs are deployed C32 (i.e. N32 ¼ 6Þ :. The TDMA
scheduling frames f11 ¼ 4 slots and f11 ¼ 6 slots. Initially,
globel round R¼ 1, the local round R11 ¼ 1 and local round
R32 ¼ 1. The vectors E11 and E23 are given as E11 ¼ ½s1; s2; s3;
s4� : and E32 ¼ ½s1; s2; s3; s4; s5; s6� :. For the first round, the SNs
s1 2C11 and s1 2C32 are selected as CHs. For the second
round (i.e., R¼ 2, R11 ¼ 2, and R32 ¼ 2), the SNs s2 2C11 and
s2 2C32 are selected as CHs. This process continues until
round 5, R11 ¼ ½5mod  4� : ¼ 1 and R32 ¼ 5. In such cases, the
SNs s1 2C11 and s5 2C32 are selected as CHs. At R¼ 7,
R11 ¼ 3, and ½7mod  6� : þ 1¼ 1. In such case, the SNs s3 2
C11 and s1 2C32 are selected as CHs and so on.

4.2.2. Path Planning for MS. In the planned topology, the
GMPs are defined at the vertices meeting point of every four
adjacent clusters. The GMPs are positioned to accomplish
three purposes: limiting the transmission range of any clus-
ter’s sensors from exceeding GMP position, constructing the
trajectory of MS, and identifying initial locations of the RVPs
which represent the MS data collection positions. Originally,

an efficient plan of the MS path should minimize total energy
utilization. This can be achieved if the transmission ranges of
the CHs to MS are also reduced. However, the employment
of some GMPs as RVPs positions may not be the appropriate
choice for all successive rounds due to the change of the CHs
positions. So, some extra points may be needed to replace
some of not appropriate GMPs. In the following, these extra
points are created according to the need of them.

(1) The RVPs Points Formulation. As mentioned before,
MS has infinite energy supply and has processing power like
BS. In addition, MS is aware of the necessary information
about the formed clusters, their included SNs, and the initial
sorting of CHs for all clusters. So, MS employs this informa-
tion to test the suitability of the presented GMPs to continue
as RVPs locations or replaced by more appropriate new loca-
tions. Let R ¼ fm1;m2;…mig: be the initial RVP locations
sequence that the MS follows to collect data from CHs, where
i¼ 1; 2; 3;…;M4 . At the start of each round R executes the
following procedure to update the sequence R as follows.
For each group, Gi 2G do the following steps.

(1) Determine the centroid cHi ¼ðxHi ; yHi Þ : of the CHs
within the group Gi:

xHi ¼ xHi1 þ xHi2 þ xHi3 þ xHi4
4

; ð22aÞ

and

yHi ¼ yHi1 þ yHi2 þ yHi3 þ yHi4
4

; ð22bÞ

where ðxHik ; yHikÞ : is the CH position of the cluster Cik 2Gi
ðk¼ 1; 2; 3; 4Þ :.

(2) Compute the sum of distances D1i among the four
CHs and the centroid cHi as follows:

1, 1

2, 2

3, 3

4, 4

5, 1

6, 2

7, 3

8, 4

9, 1

R R11 s1 s2 s3 s4

C11
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2

3

4
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6

1

2

3

R32 s1 s2 s3 s4 s5 s6

C32

CH

CM

FIGURE 5: Example of two clusters from different groups in operational mode. C11 2G1 with four SNs and frame with length four slots. C32 2
G3 with six SNs and frame with length six slots.
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D1i ¼ ∑
4

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xHi − xHik
À Á

2 þ yHi − yHik
À Á

2
q

: ð23Þ

(3) Compute the sum of distances D2i among CHs and
the GMP mi as follows:

D2i ¼ ∑
4

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xHik
À Á

2 þ yi − yHik
À Á

2
q

; ð24Þ

where ðxi; yiÞ : denoting the position of the GMP mi.
(4) If D1i <D2i then replace mi within the sequence R

with the location cHi .
(5) If D2i ≤D1i then keepmi within the sequence R with-

out any change.

Since the sequence R is performed by the MS at every
round, it value may be changed from round to another.

(2) The MS Path Optimization. The path trajectory starts
from the BS, passes through all RVPsR, and finally backs to
the BS. For this purpose, the optimization GA is employed to
select the shortest path among all available path traversing all
RVPs. The MS path trajectory algorithm takes the sequence
R of all RVP as input and gives a path trajectory P that
traverses all RVPs in a shortest path manner as output. As
shown in Algorithm 3, the process of constructing the MS
path trajectory proceeds as follows:

(1) Divided the setR into an arbitrary number K< M
4 of

clusters, using the constrained-K-means algorithm.
(2) Apply the GA algorithm to obtain the shortest path

pi within each cluster i, where i¼ 1; 1; 3;…;K .
(3) Connect the resulting subpaths p1, p2, p3, …, pK to

obtain the MS path trajectory P.

4.3. Computational Complexity Analysis. For N SNs,M clus-
ters, Gið1≤ i≤M

4 Þ : groups, four cluster per group and Nik SNs
for cluster k within group i, the time complexity of Algorithm 1
is given as follows. In Step 2, the time complexity is OðM4 Þ :,
considering that the number of groups is M

4 . In Step 3, the time
complexity is OðM4 × 4Þ : ¼OðMÞ :, as each group contains only

four clusters. The time complexity in Steps 4, 5, 9, 10, and 11 is
given as OðM4 × 4×NikÞ : ¼OðM ×NikÞ :. For Steps 6 and 7, the
time complexity is given as OðM ×Nik × ðNik − 1ÞÞ :. The time
complexity of steps from 12 and 13 is given as OðM ×Nik ×
NikÞ :. Therefore, the time complexity of Algorithm 1 is
expressed as OðM ×Nik ×NikÞ :. The time complexity of the
CH activation in Algorithm 2 is the same as in Algorithm 1.

The time complexity of the MS path trajectory in Algo-
rithm 3 can be determined through the following calculation.
The set of RVPs, denoted asR, is partitioned into K clusters,
where K ≤M

4 , utilizing the constrained-K-means clustering
algorithm in Step 2. Let ni be the number of RVPs in cluster
i and i¼ 1; 2; 3;…;K . it is clear that L¼∑K

i¼1ni, where L
denotes the number of RVPs in the set R, ni ≤M

4 and
M<<N . The loop (Steps 6–8) in Algorithm 3 iterates
through each cluster i and employs the GA to determine the
shortest path among the RVPs within that specific cluster.
Given the input size ni RVPs, the population size P and the
number of generations G, the time complexity is given in
Chatterjee et al.’s [39] and Srinivas and Patnaik’s [40] stud-
ies, as ∑K

i¼1OðP×G× niÞ :. For Steps 9 and 10, the time com-
plexity is given as OðKÞ :.

In our proposed scheme, we emphasize the significance
of the configure mode, a pivotal aspect that plays a crucial
role in the overall system operation. The configure mode is
designed to centralize the computational burden at the BS.
By adopting this approach, we ensure that SNs and the MS
are not overwhelmed with continuous computational tasks.
This strategic distribution of computational load minimizes
the impact on the resources and energy consumption of SNs
and the MS, thereby enhancing the overall efficiency and
sustainability of our proposed solution.

5. Experimental Results

In this section, various effective metrics are employed
through simulation experiments to assess the performance
of the proposed scheme. So, the experiments result of the
presented scheme compared with the prevailing state-of-the-
art algorithms, such as EEMSR [29], EAPC [25], BIIE [27],
GA-SMT [30], and GTA-BE [33]. Both the proposed scheme
and the state-of-art algorithms implemented using Python

1: Input: The set R, the number of clusters K .

2: Output: The MS path trajectory P.

3: Divide R into K clusters using constrained-K-means algorithm.

4: Initialize P¼fg:.

5: for i¼ 1 to K do

6: Apply GA algorithm to generate the optimal sub path pi of cluster i.

7: Add pi to P.

8: end for

9: for i¼ 1 to K − 1 do

10: Connect the last RVP of the path pi to the start of RVP of the path piþ1.

11: end for

ALGORITHM 3: The MS path trajectory algorithm.
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3.11.0 mounted on Microsoft Windows 10 Pro with Intel
Core i7 CPU of 4.7 GHz and 16GB RAM. The parametric
values of the state-of-the-art algorithms used as published in
their papers and validating the results by comparing them
with their outcome. In addition, the comparison among
these algorithms and the offered scheme performed based
on a variety of performance metrics such as stability period,
network lifetime, average energy consumption, communica-
tion MO, data transmission latency (DTL), and throughput.
Moreover, the comparison was performed with various node
densities. All the SNs randomly distributed in the observing
area A¼ 100× 100 m2. The BS placed at location (100, 100).
The experiments run 100 times for each metric. The average
results of each metric are plotted in a specific graph as in the
following subsection. Table 3 reveals the additional simula-
tion parameters considered in the experiments.

5.1. Stability Period. The stability period is measured based on
the total number of data gathering rounds performed before
any SN’s residual energy reachs zero. According to the imple-
mented methodology, the power consumption by each SN
within each cluster is approximately equivalent. As a result,
all clusters’ SNs will remain doing their role together for
extended period of time. This means the whole network con-
tinues functional for longer duration. As a result, the network
performance is enhanced as the stability period is prolonged.

Figure 6 presents a comparison of the stability periods
versus different numbers of SNs. When utilizing 100 sensors,
the stability period of the proposed scheme outperforms
EEMSR by 3:89%, GTA-BE by 43:9%, BIIE by 51:94%,
GA-SMT by 58:62%, and EAPC by 67:69%. However, as
the number of employed SNs increases, the results of the
proposed scheme exhibit significantly greater improvements
compared to the outcomes of the compared algorithms. Spe-
cifically, when employing 500 SNs, the stability period of the
proposed scheme increases to 42:75%, 68:18%, 76:67%,

80:19%, and 3:03% when compared with EEMSR, GTA-
BE, BIIE, GA-SMT, and EAPC, respectively. These results
are deemed valid because an increase in the number of SNs
in the presented scheme leads to a rise in the number of SNs
within each cluster. Consequently, each SN will assume the
role of a CH after an excessive number of rounds, allowing
them to retain residual energy for more rounds. Additionally,
CH selection is a self-coding process performed without the
need for overhead messages or mutual processing among the
cluster’s members. As a result, the proposed scheme is more
efficient in avoiding the premature death of SNs and pro-
vides extended stability compared to other state-of-the-art
algorithms.

5.2. Network Lifetime. Figure 7 illustrates the achieved network
lifetime for the proposed scheme compared with EEMSR,
GTA-BE, BIIE, GA-SMT, and EAPC, respectively. The
X-axis symbolizes the different number of SNs that
participate in the execution of each experiment. The Y-axis
specifies the overall network lifetime steadiness of individual
schemes. For 100 sensors, the simulation results show that the
presented scheme enhances the network lifetime up to 0.1, 49.3,
73.18, 74.81, 81.68, and 84.46 when compared with EEMSR,
GTA-BE, BIIE, GA-SMT, and EAPC, respectively. When 500
sensors are deployed, thementioned results are raised to 49.3%,
73.18%, 74.81%, 81.68%, and 84.46% for EEMSR, GTA-BE,
BIIE, GA-SMT, and EAPC, respectively. The massive results
differences are achieved due to an increase in the amount of
energy assigned to the excessive sensors. The recorded results
for employing 500 sensors show massive differences as
compared to the use of 100 sensors. This improvement is
achieved due to an increase in the amount of energy offered
by the 500 sensors. In addition, the offered scheme performs
three significant operations to enhance the network lifetime:
the modified TDMA scheduling, self-coding technique of each
SN, and the optimal routing algorithms using a MS. For each
round, the modified TDMA limits the time of sensing

TABLE 3: Control parameters and their values.

Parameter Value

Network type WSN
Number of sensors 100–500 SNs
Number of MS 1
Physical medium wireless MAC layer 802.11
MAC protocol Modified TDMA
Transmission range 25m
MS speed, v 2m/s
Propagation radio model Two way ground
Monitoring area 100× 100m2

Initial energy of a sensor node 0.5 J
Ee 50 nJ/bit
Ef 10 pJ/bit/m2

Em 0.0013pH/bit/m4

Eagg 5 nJ/bit
Data packet size 512 bytes
Control packet size 64 bytes
BS coordinates (100,100)
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FIGURE 6: Stability period when first SN is death.
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operation of each SN to one definite slot. This leads to save the
energy consumption due to the repeating use of some sensors
as a CH more than once in the same round as in the original
TDMA. Moreover, the employment of each sensor to be a CH
at a specific round is prescheduled in the configure mode. At
the start of each round, each sensor executes CH activation
algorithm to know its role in the current round, CH or CM.
Accordingly, a lot of energy consumed in the compared
schemes due to overhead communication among CMs to
select CH is avoided. Consequently, both modified TDMA
and self-coding algorithm are participated in saving a lot of
energies lost in the compared algorithms. Finally, the optimum
selection of the RVPs leads to the minimization of the CHs’
distances when transmitting their aggregated data to MS. As a
result of the implemented procedures in the mentioned
operations, the consumed power is reduced, and hence
network lifetime is expanded. So, the proposed scheme is
more effective in extending network lifetime than the use of
the remaining state-of-the-art algorithms.

5.3. Average Energy Consumption. The average energy con-
sumption of the network EN evaluated based on the energy
spending Ej of each SN sj 2Cik every round R. To reduce the
entire energy consumption, the energy consumption of each
SN should be balanced during the network lifetime. The EN
can be deduced as follows:

EN ¼
∑
RT

R¼1
∑
Gj j

i¼1
∑
4

k¼1
∑
Nik

j¼1
Ejk

N
:

ð25Þ

Figures 8 and 9 depict the comparison of average energy
consumption among the proposed scheme with other state-
of-the-art algorithms. For 100 SNs, Figure 8 reveals that the
suggested scheme reduces the average energy consumption
by 32:56%, 56:42%, 66:53%, 72:93%, and 75:3% compared to

EEMSR, GTA-BE, BIIE, GA-SMT, and EAPC, respectively.
For 500 SNs, Figure 9 indicates that the suggested scheme
reduces the average energy consumption by 58:55%, 71:79%,
78:84%, 83:45%, and 88:93% compared to EEMSR, GTA-BE,
BIIE, GA-SMT, and EAPC, respectively.

The increased number of SNs leads to an increase in the
amount of energy offered due to excess sensors. According to
the energy model presented in Section 3.2, the dissipated
energy of each SN is maximized when it plays the role of
the CH. According to the scheduled CH Algorithm 1 of the
proposed scheme, each SN is given a chance to be a CH at
specific round. In addition, this chance does not repeat until
the all-remaining SNs are given the same chance. Conse-
quently, the energy consumption of each SN will be saved
when its role as a CH is delayed. This is achieved when the
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FIGURE 7: Network lifetime (i.e., the number of rounds until residual
energy become zero).
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numbers of SNs are increased within each cluster. In addi-
tion, CH selection is performed based on the self-coding of
each SN. In addition, CH selection is performed based on the
self-coding of each SN. This means that there are no over-
head communication performed due to the CH selection.
Avoiding the overhead communications leads to tiny power
consumption as compared with the other algorithms. Finally,
the optimum selection of the RVPs leads to the minimization
of each CH’s distances when transmitting its aggregated data
to MS. This distance’s minimization leads to the minimiza-
tion of power consumption duet to the aggregated data
transmission. As a result, the implementation of the pro-
posed method has succeeded in presenting different techni-
ques to avoid a lot of energy consumed when the other
compared methods are applied. Hence the proposed scheme
is more effective in extending network lifetime than the use
of the remaining state-of-the-art algorithms. However, the
enhanced energy efficiency is opposed by some increasing in
the latency of the routed data. This increase is caused due to
increase the time of gathering data from excess sensors to CH
then transmitting to MS. However, this drawback can be
avoided by exploiting more than MSs to minimize the data
routing latency.

5.4. Message Overheads. MO is defined as the number of
control messages transmitted among the employed SNs,
MS, and BS through the network configuration and opera-
tional modes. The amount of this metric should be mini-
mized. The increase of these messages leads to the increase
of the collision and power consumption of the deployed SNs.
Two communication overhead messages are employed in the
proposed scheme. First, in the configure mode, the BS trans-
mits a single message to all SNs contains the TDMA frame
and the vector of the CH order for each cluster. Second, in
the operational mode, the SN which loses its ability to be a
CH sends a single message to all the CMs in its cluster. So,
the total number of the overhead messages within the net-
work is reduced as compared by the remaining state-of-the-
art algorithms. Figure 10 reveals the comparison between the
presented scheme and these state-of-the-art algorithms in
terms of the MOs. The MO reduced up to 29% as compared
to EEMSR, up to 38:4% as compared to GTA-BE, up to
38:72% as compared to BIIE, up to 44:65% as compared to
GA-SMT, and up to 47:75% as compared to EAPC. This
decline occurs due to the one-time network topology
established process and scheduling algorithm of the CHs
selection. This leads to the minimization of the excessive
message exchange in the networks.

5.5. Data Transmission Latency. DTL is the time needed to
transmit data from SNs to BS through the MS. It is computed
by summation of the overall time mandatory to visit each
RVP hovering locations and gathering the data from each
CH. So, selecting the optimal number of RVPs leads to
reducing the DTL. As a result, the reliability and overall
performance of the networks are improved.

Let v denoting the MS speed and THi
denoting the MS

hovering time at RVP location ri 2R. The data transmission
latency, DTL, consists of two components: (1) the overall MS

trajectory time ðp1 þ p2 þ…þ pKÞ : × v, where pj 2P and
j¼ 1; 2; 3;…;K and K is the number of clusters generated
by the K-mean algorithm. (2) The amount of time due to the
MS spent hovering over each RVP location ri 2R. Conse-
quently, the DTL can be given as follows:

DTL¼ ∑
K

i¼1
pi

� �
× v þ ∑

Rj j

i¼1
THi

: ð26Þ

Figure 11 illustrates the vast noticeable reduction of the DTL
among the proposed scheme and the remaining algorithms.
The amount of DTL increases as the number of sensors
increases. When 100 sensors are used, the proposed scheme
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is reduced up to 15.3% as compared EEMSR, up to 72.5%
compared to GTA-BE, up to 75.5% compared to BIIE, up to
87.9% compared to GA-SMT, up to 81.5% compared to
EAPC. This reduction is achieved due to two main reasons.
First, selecting the optimal number of RVPs. Second, the
positions of RVPs are designed to allow MS to serve four
CHs at each move. In other algorithms, each RVP is selected
to serve one CH. So, the proposed scheme overcame the
compared algorithms and its MS become able to accomplish
the data gathering process in a more convenient time.

According to the aforementioned network model, the
intended geographic area is divided into equal-sized clusters
based on the range of these similar sensors. In addition, each
cluster’s members perform their task independently to other
cluster’s members. Thus, the scalable of WSN is simply pos-
sible by employing additional number of clusters to cover the
extended area. Each of additional clusters will supply by an
excess number of required SNs. This scalability may cause an
increasing in path trajectory of the MS when move to gather
the aggregated data from the CHs of different clusters. The
lengthen path may cause bad effect on the delay bound of the
collected data. However, this problem can be avoided by
assigning more than MS with different path. This mean the
whole area is portioned into more than section. Each section
has its own MS and each MS has its own path. So, the
architecture of the proposed scheme can be designed to be
flexible and scaled to large numbers of nodes. This allows an
easy adaptation to different environments and tolerating an
extensive data collection and monitoring in a wide range of
applications.

5.6. Throughput Analysis. The network throughput is char-
acterized as the proportion of the aggregate packets received
by the BS to the total number of packets aggregated at the
CHs and transmitted to the MS at RVPs [23]. Figure 12
illustrates the mean throughput of the proposed scheme in
comparison to other state-of-the-art algorithms. The X-axis

represents the total SNs while the Y-axis signifies the overall
percentage of the average throughput over 5,000 rounds. From
the figure, we note that the proposed scheme exhibits an
enhanced average throughput, surpassing EAPC, GA-SMTBIIE,
BIIE, GTA-BE, and EEMSR by 60.27%, 54.1%, 45.45%, 36.9%,
and 4.9%, respectively. The proposed scheme consistently
demonstrates commendable average throughput throughout
the majority of rounds. This is deduced due to the equilibrium
in energy consumption across each SN over the network’s
lifespan that ensures each SN preserves its residual energy for
an extended duration.

5.7. Statistical Analysis. The one-way analysis of variance
(ANOVA) is a statistical analysis widely employed across
diverse fields such as psychology, biology, sociology, and
business [41, 42]. It is utilized to ascertain whether there are
any statistically significant differences between the means of
one or more independent (unrelated) groups [43, 44]. In this
paper, we conduct a one-way ANOVA test on the sample data
generated by both the proposed algorithm and state-of-the-art
algorithms, including EEMSR, GTA-BE, BIIE, GA-SMT, and
EAPC. To conduct the test, we have taken into account
performance metrics such as stability period, network lifetime,
average energy consumption, communication MO, DTL, and
throughput. Additionally, we utilize the same parameters as
depicted in Table 3.

The ANOVA test determines whether the null hypothe-
sisH0 (which suggests that the means of the given algorithms
are the same) can be rejected, thereby accepting the alterna-
tive hypothesis H1 (indicating that the means of the algo-
rithms are significantly different), or whether H0 is accepted
and H1 is rejected [44]. Let the null hypothesis be as follows:

H0 :μproposed ¼ μEEMSR ¼ μGTA-BE ¼ μBIIE ¼ μGA-SMT ¼ μEAPC;

ð27Þ

H1 :μproposed ≠ μEEMSR ≠ μGTA-BE ≠ μBIIE ≠ μGA-SMT ≠ μEAPC;

ð28Þ

where μx represents the mean of algorithm x. The ANOVA
table provides a comprehensive summary of various statistical
measures including sources of variation, sum of squares SS,
degrees of freedom df , mean squares MS, F-statistical value
(Fs), p-value (pv) and F-critical value (Fc). It delineates three
primary sources of variation: between-group variation, which
accounts for differences between group means; within-group
variation, reflecting differences within each group; and total
variation, representing the overall variability in the dataset.
The value of significance level is considered as, α¼ 0:05.

Typically, if the pv is less than the chosen significance
level α and the Fs exceeds the Fc, then the null hypothesis H0
in Equation (27) is rejected, and the alternative hypothesis
H1 in Equation (28) is accepted. Otherwise, H0 is accepted,
and H1 is rejected. Therefore, we encounter the following
two conditions:
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(1) Condition 1: Reject H0 and accept H1, if pv<α and
Fs>Fc.

(2) Condition 2: Accept H0 and reject H1, if condition 1
is not satisfied.

The ANOVA results, displayed in Table 4, outline the per-
formance of six different algorithms across multiple metrics:
stability period, network lifetime, average energy consumption,
communication MO, DTL, and throughput. Notably, five of
these metrics meet Condition 1, leading to the rejection of the

null hypothesis. However, for communication MO, the null
hypothesis is accepted. This suggests that there is a significant
difference between at least one of the means of the algorithms.
However, without further information, it remains unclear which
specific algorithm or algorithms contribute to this distinction,
highlighting the necessity for Tukey’s honest significant differ-
ence (HSD) test [41]. Tables 5–9 present the results obtained
from conducting the Tukey’s HSD test. Upon thorough exami-
nation of these tables, it becomes apparent that the “reject” value
in the last column for each scenario signifies the rejection of the

TABLE 4: Results of ANOVA test.

(a) Stability period

Source of variation SS df MS Fs pv Fc
Between groups 4.08E+ 07 5 8.16E+ 06 106.47 1.42E− 15 2.621
Within groups 1.84E+ 06 24 7.66E+ 04 — — —

Total 4.26E+ 07 29 — — — —

(b) Network lifetime

Source of variation SS df MS Fs pv Fc
Between groups 3.56E+ 08 5 7.13E+ 07 57.01 1.56E− 12 2.621
Within groups 13.00E+ 07 24 1.25E+ 06 — — —

Total 3.86E+ 08 29 — — — —

(c) Average energy consumption

Source of variation SS df MS Fs pv Fc
Between groups 7.41E+ 04 5 1.48E+ 04 21.18 3.89E− 15 2.621
Within groups 8.40E+ 04 120 7.00E+ 02 — — —

Total 1.58E+ 05 125 — — — —

(d) Communication message overhead

Source of variation SS df MS Fs pv Fc
Between groups 2.43E+ 05 5 4.85E+ 04 0.80 0.56 2.621
Within groups 1.46E+ 06 24 6.10E+ 04 — — —

Total 1.71E+ 06 29 — — — — —

(e) Data transmission latency

Source of variation SS df MS Fs pv Fc
Between groups 4.73E+ 04 5 9.45E+ 03 23.773 1.42264E− 08 2.621
Within groups 9.54E+ 03 24 3.98E+ 02 — — —

Total 5.68E+ 04 29 — — — —

(f ) Throughput

Source of variation SS df MS Fs pv Fc
Between groups 1.66E+ 04 5 3.32E+ 03 148.590 3.06017E− 17 2.621
Within groups 536.255 24 22.344 — — —

Total 1.71E+ 04 29 — — — —

TABLE 5: Tukey’s HSD test results: stability period.

Stability period

Treatments pair Tukey HSD Q statistic Tukey HSD pv Tukey HSD inference Null hypothesis

Proposed vs. EAPC 26.731 0.0010053 pv<0:05 Reject
Proposed vs. GA-SMT 24.065 0.0010053 pv<0:05 Reject
Proposed vs. BII E 22.4493 0.0010053 pv<0:05 Reject
Proposed vs. GTA-BE 19.8641 0.0010053 pv<0:05 Reject
Proposed vs. EEMSR 9.2001 0.0010053 pv<0:05 Reject
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null hypothesis. This leads us to confidently affirm that our
proposed algorithm exhibits statistical significance, showing
notable differences from the other algorithms. However, it is
paramount to underscore that while the proposed algorithm
yields enhancements in throughput and latency by 4.9% and
15.3%, respectively, in comparison with the EEMSR algorithm
as delineated in Sections 5.5 and 5.6, this advancement is deemed
statistically insignificant, as evidenced by Tukey’s honestly sig-
nificant difference (HSD) test, as elucidated in Tables 8 and 9.

6. Conclusion

This paper introduces an intelligent energy-efficient data
routing scheme for WSNs utilizing MS. The operations of

the proposed scheme are performed in two successive modes:
configure and operational modes. The configure mode includes
cluster construction, TDMA scheduling, and CHs selection. The
self-encoding module in each SN is used to pick the CH in
operational mode without any communication between the
CMs within each cluster. For the MS-based data routing, the
optimal number of RVPs is selected, from which the MS’s best
path is determined using K-mean clustering and GAs. Simula-
tions and analysis have been implemented to confirm the effec-
tiveness of the proposed scheme. The simulation results
guarantee that the offered scheme is more efficiently than the
current state-of the-algorithms such as GTA-BE, BIIE, GA-
SMT, EAPC, and EEMSR in terms of the stability period, net-
work lifetime, average energy consumption, DTL, MOs, and the

TABLE 6: Tukey’s HSD test results: network lifetime.

Network lifetime

Treatments pair Tukey HSD Q statistic Tukey HSD pv Tukey HSD inference Null hypothesis

Proposed vs. EAPC 19.6253 0.0010053 pv<0:05 Reject
Proposed vs. GA-SMT 18.2253 0.0010053 pv<0:05 Reject
Proposed vs. BII E 16.2654 0.0010053 pv<0:05 Reject
Proposed vs. GTA-BE 15.1654 0.0010053 pv<0:05 Reject
Proposed vs. EEMSR 7.5455 0.0010053 pv<0:05 Reject

TABLE 7: Tukey’s HSD test results: average energy consumption.

Average energy consumption

Treatments pair Tukey HSD Q statistic Tukey HSD pv Tukey HSD inference Null hypothesis

Proposed vs. EAPC 11.7877 0.0010053 pv<0:05 Reject
Proposed vs. GA-SMT 10.8945 0.0010053 pv<0:05 Reject
Proposed vs. BII E 10.3586 0.0010053 pv<0:05 Reject
Proposed vs. GTA-BE 9.4817 0.0010053 pv<0:05 Reject
Proposed vs. EEMSR 5.4461 0.0025754 pv<0:05 Reject

TABLE 8: Tukey’s HSD test results: data transmission latency.

Data transmission latency

Treatments pair Tukey HSD Q statistic Tukey HSD pv Tukey HSD inference Null hypothesis

Proposed vs. EAPC 13.4264 0.0010053 pv<0:05 Reject
Proposed vs. GA-SMT 10.4662 0.0010053 pv<0:05 Reject
Proposed vs. BII E 9.0757 0.0010053 pv<0:05 Reject
Proposed vs. GTA-BE 7.43867 0.00300533 pv<0:05 Reject
Proposed vs. EEMSR 3.4467 0.183274 Insignificant Accept

TABLE 9: Tukey’s HSD test results: throughput.

Throughput

Treatments pair Tukey HSD Q statistic Tukey HSD pv Tukey HSD inference Null hypothesis

Proposed vs. EAPC 28.6979 0.0010053 pv<0:05 Reject
Proposed vs. GA-SMT 25.7781 0.0010053 pv<0:05 Reject
Proposed vs. BII E 21.6904 0.0010053 pv<0:05 Reject
Proposed vs. GTA-BE 17.6557 0.00300533 pv<0:05 Reject
Proposed vs. EEMSR 2.0364 0.6809685 Insignificant Accept
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average of throughput. The findings are further supported by
statistical validation through hypothesis testing and Tukey’s
honest significant difference analysis.

The implementation of the proposed scheme may
depend on the environment of the intended scenario. For
instance, scenarios of monitoring border’s activities or traffic
monitoring may need to specified knowledge and proficiency
to determine the appropriate locations for the WSN. One of
the implications affects these scenarios is interference with
signals of other wireless sensor devices. This causes a bad
influence on network performance and reliability. In future
work, we aim to enhance the proposed scheme to handle
scalability and obstacles issues. In addition, we investigate
the deployment of multiple MSs simultaneously in large scale
to cover different areas.
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