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In the domain of data mining, the extraction of frequent patterns from expansive datasets remains a daunting task, compounded by
the intricacies of temporal and spatial dimensions. While the Apriori algorithm is seminal in this area, its constraints are
accentuated when navigating larger datasets. In response, we introduce an avant-garde solution that leverages parallel network
topologies and GPUs. At the heart of our method are two salient features: (1) the use of parallel processing to expedite the
realization of optimal results and (2) the integration of the cat and mouse-based optimizer (CMBO) algorithm, an astute algorithm
mirroring the instinctual dynamics between predatory cats and evasive mice. This optimizer is structured around a biphasic model:
an initial aggressive pursuit by the cats and a subsequent calculated evasion by the mice. This structure is enriched by classifying
agents using their objective function scores. Complementing this, our architectural blueprint seamlessly amalgamates dual Nvidia
graphics cards in a parallel configuration, establishing a marked ascendancy over conventional CPUs. In amalgamation, our
approach not only rectifies the inherent shortfalls of the Apriori algorithm but also accentuates the extraction of association rules,
pinpointing frequent patterns with enhanced precision. A comprehensive evaluation across a spectrum of network topologies
explains their respective merits and demerits. Set against the benchmark of the Apriori algorithm, our method conspicuously
outperforms in terms of speed and effectiveness, heralding a significant stride forward in data mining research.

1. Introduction

Data mining is a valuable tool for detecting hidden patterns and
uncovering relationships between data [1]. For small databases
with limited data volume, simple queries embedded in different
databases can effectively extract useful information and uncover
certain data rules [2]. However, discovering and reporting hid-
den patterns in big data requires significant resources and exper-
tise in data exploration and analysis [3]. By definition, data
mining converts low-level knowledge into high-level, compre-
hensible knowledge and often reveals previously unknown and
beneficial patterns [4]. Data mining encompasses various tech-
niques and methods for discovering knowledge and pattern rec-
ognition, such as discovering association rules [5], clustering [6],

classification [7], time series [8], artificial neural networks [9],
machine learning [10], and decision trees [11].

Various algorithms have been developed for extracting
association rules in data mining. A foundational algorithm
for association rule mining (ARM) is introduced in [12].
This method extracts only one item from the rules using an
algorithm based on the discovery of simple rules. The algo-
rithm employs iterative searches of the data to determine the
support for each possible candidate. In [13], the search oper-
ation is conducted in two steps. First, the most frequent item
sets are identified, and in the second step, the rules in the
frequent subsets are extracted using iterative procedures,
one rule at a time [14] introduced an algorithm based on
direct hashing and pruning (DHP). This method produces
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large item sets using the HASH technique to represent transac-
tions, leading to a reduction in the database’s size. The use of
the clustering technique to avoid duplicate search mechanisms
in the database is presented in [15]. The algorithm introduced
in [16] involves searching the database twice to achieve the
necessary support. Another algorithm, introduced in [17], is
based on the node-set data structure and preorder coding
(POC) tree to discover frequent data sets. Additionally [18],
proposes an algorithm for exploring closed, frequent sequences
of item sets. This algorithm employs sparse and vertical id-list
data structures to represent the dataset, along with a new one-
step methodology for controlling sequence closure and search
space pruning.

The Apriori algorithm is one of the fundamental algo-
rithms for detecting association rules. It calculates and
extracts all k-member subsets of a k-product set [19]. This
algorithm identifies frequent single-member products after a
complete search of the database. Then, using these frequent
single-member products, it identifies two-member sets and
turns these sets into candidates for counting. In the next step,
the database is searched to count the number of occurrences
of these sets. The primary challenges in algorithms like
Apriori are the quality of the output, the extracted relations,
and the algorithm’s running time. Increasing the size of
items or products can significantly increase the traversal
time of algorithms like Apriori. As a result, parallel proces-
sing methods can considerably reduce the running time of
extracting frequent patterns. Another method for paralleliz-
ing and speeding up calculations is using the parallel thread
library and running the program on the central processing
unit (CPU). However, parallelizing algorithms like Apriori
based on the thread library may not achieve a high level of
parallelism due to CPU sharing between different processes.
Moreover, the thread library must often wait in a queue to
access CPU cores [20]. A recent trend involves using a gra-
phics processor unit (GPU) instead of the primary processor
to parallelize and accelerate algorithms.

Fang et al. [21] presented two distinct implementations of
the Apriori method for extracting association rules on next-
generation GPUs. Their method leverages SIMD (single
instruction, multiple data) architectures in GPUs. Zhang
et al. [6] introduced GPApriori, wherein a GPU is optimized
for association rule extraction computations. Their implementa-
tion, executed on anNvidia Tesla T10 graphic processor, achieves
up to a 100x speedup. In [22], Silvestri andOrlando proposed two
GPU parallelization strategies and performed extensive experi-
ments using real-world data to assess this method’s efficacy.
Fournier-Viger et al. [23] introduced a rapid association rule
extraction method for big data called GMiner. However, Apriori
has a disadvantage related to its high computational time, as it
requires repeated database scans to search for each combination
of frequent item sets. In the second proposed method of this
study, a new hybrid algorithm based on Apriori and cat-and-
mouse optimization aims to enhance performance further. Sim-
ulation outcomes suggest that combining the cat-and-mouse and
Apriori-based optimization algorithms yieldsmore detailed infor-
mation, faster calculation speeds, and reduced energy consump-
tion compared to the standard Apriori algorithm.

To enhance the accuracy of the classifier produced by Ant-
Miner, the authors in [24] combined ACO with the PSO algo-
rithm. Additionally [25], introduced a new sequential coverage
strategy for Ant-Miner tomitigate the rule interaction problem.
To counteract premature convergence to local optima in ACO,
an ACO-based classification algorithm named Ant-MinerPAE,
grounded on pheromone absorption and removal, was pro-
posed in [26]. Concurrently, Ant-Miner faces a deficiency in
exploitation due to the absence of a local search [27]. To tackle
this, ILS-AntMiner was recently introduced [27]. Djenouri
et al. [28] proposed a distributedmethod based on evolutionary
fuzzy systems to extract and consolidate emerging descriptor
patterns in data streams from various sources. Initially, an
evolutionary algorithm for efficient data processing is intro-
duced to extract emerging patterns from the data streams pro-
duced by each device, culminating in a local model for each
stream. Subsequently, multiple fusionmethods are presented to
amalgamate these patterns and formulate the global model. A
comprehensive experimental study was undertaken to assess
this evolutionary algorithm’s efficacy in extracting high-caliber
emergent patterns and its aptitude for addressing conceptual
drift. The quality of the proposed fusion methods was also
scrutinized.

In this context, the moth-flame optimization algorithm is
renowned for addressing optimization problems across diverse
fields, credited to its straightforward structure and effortless
implementation. However, MFO often struggles to strike a bal-
ance between the exploration and exploitation processes and
grapples with a lack of population diversity during the explora-
tion phase, especially when addressing intricate engineering opti-
mization challenges. To surmount these challenges, Zhao et al.
[29] introduced amulticlass improvedmoth-flame optimization
(MIMFO) algorithm. In MIMFO, the population undergoes
restructuring through a chaotic grouping mechanism and a
dynamic regrouping approach, enhancing the grouping quality
and diversifying the population. Spiral search and linear search
are executed for two subgroups to bolster search efficacy and
harmonize exploration and exploitation. Additionally, a Gauss-
ian mutation is employed to generate the flame, which hastens
convergence and augments exploration prowess. The efficacy of
MIMFO was tested on 13 benchmark problems of varying
dimensions andCEC 2014 test performances, with the outcomes
indicating MIMFO’s pronounced superiority over other swarm
intelligence algorithms and MFO variants in terms of optimal
performance and global convergence. MIMFO’s prowess in
addressing 57 engineering-constrained optimization challenges
further underscores its capability in effectively tackling real-
world engineering issues.

The pigeon-inspired optimization (PIO) algorithm, a para-
digm of intelligent optimization algorithms, draws inspiration
from the navigational behavior exhibited by pigeon flocks. PIO
outshines other algorithms when addressing numerous optimi-
zation challenges. Yet, its efficacywanes when tackling large-scale
intricate optimization problems, and its runtime is protracted.
The performance of swarm-based optimization algorithms like
PIO can be enhanced through parallel processing, and their
hardware implementation prerequisites can be streamlined to
expedite execution times. Garcia-Vico et al. [30] put forth a
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hardwaremodel rooted in FPGA-based PIO. This approach cen-
ters on multi-individual and multidimensional parallelism in
pigeon populations. To achieve further acceleration, the method
incorporates a parallel bubble sort algorithm and a multiply-
accumulator (MAC) pipeline design. Simulation outcomes illus-
trate that the FPGA-based PIO implementation can markedly
bolster PIO’s computational prowess and adeptly navigate com-
plex practical challenges.

In this paper, we tackle the challenges associated with
extracting frequent patterns from large datasets, especially
when complicated by temporal and spatial dimensions. We
identify the limitations of the established Apriori algorithm,
particularly when applied to more extensive datasets, and in
response, present an innovative solution that leverages par-
allel network topologies and GPU capabilities. Two key fea-
tures define our approach: first, the use of parallel processing
to achieve faster results, and second, the incorporation of the
novel CMBO algorithm, which mirrors the natural dynamics
between predatory cats and evasive mice. This CMBO algo-
rithm is characterized by a unique biphasic model and is
further refined by classifying agents based on objective func-
tion scores. In addition, our model’s architectural design
integrates dual Nvidia graphics cards, giving it a clear advan-
tage over traditional CPU-driven methods. Through our
efforts, we not only address the limitations of the Apriori
algorithm but also enhance the accuracy of association rule
extraction. We subjected our model to rigorous testing across
various datasets, and the results consistently demonstrate its
superior speed and effectiveness against established bench-
marks, signaling a notable advancement in data mining
methodologies.

The main contributions of the proposed model are:

(1) The model presents an avant-garde approach that
caters specifically to the challenges posed by expansive
datasets, addressing both their temporal and spatial
complexities. The model utilizes parallel processing,
which speeds up the computation and realization of
optimal results.

(2) We introduce the CMBO algorithm. This algorithm
stands out due to its biphasic model that emulates the
instinctual dynamics between predatory cats and
evasive mice. It is further refined by the unique
method of classifying agents based on their objective
function scores.

(3) The architectural design of the model integrates dual
Nvidia graphics cards in a parallel setup. This con-
figuration offers a significant advantage over tradi-
tional CPU-based systems in terms of speed and
computational efficiency.

2. The Proposed Method

In this study, a new optimization algorithm called CMBO,
which imitates the natural behavior of cats and mice, is pre-
sented. In the proposed CMBO, the movements of cats
toward mice, as well as the escape of mice to a safe place,

are simulated. Mathematical modeling and CMBO formulation
are proposed for implementation of optimization problems.
Finally, performing CMBO is evaluated on a standard set of
three different objective functions, including unimodal, high-
dimensional multimodal, and fixed-dimensional multimodal.

2.1. Cat and Mouse Optimizer Algorithm. In this section,
after stating the theory of the CMBO algorithm, its mathe-
matical model is presented for various optimization pro-
blems. CMBO is a population-based algorithm inspired by
the natural behaviors of cats attacking mice and mice escap-
ing to safety. The search agents in the proposed algorithm are
divided into two groups: cats and mice. Search agents scan
the problem space with their random movements. The pro-
posed algorithm updates the population of individuals in two
consecutive steps. In the first and second phases, the move-
ment of cats toward mice and the escape of mice to a safe
place are modeled, respectively.

Regardingmathematics, each individual in the population
is a representation of a proposed solution to the problem.
Each individual in the population determines the values of
the problem variables according to their position in the search
space. Therefore, each individual in the population is a vector
that determines the values of the variables in the problem. The
population of the algorithm is determined using a matrix
called the population matrix, according to Equation 1:

X ¼

X1

⋮
Xi

⋮
XN

2
6666664

3
7777775
N×m

¼

x1;1 ⋯ x1;d ⋯ x1;m

⋮ ⋱ ⋮ ⋰ ⋮
xi;1 … xi;d … xi;m

⋮ ⋰ ⋮ ⋱ ⋮
xN;1 ⋯ xN;d ⋯ xN;m

2
6666664

3
7777775
N×m

;

ð1Þ

where X is the CMBO population matrix, Xi is the i
th search

factor, xi;d is the problem variable value d obtained by the ith

search factor, and N and m are the number of population
individuals and the number of problem variables, respectively.
The initial values for the mouse population matrix were ran-
domly generated within the boundaries of the problem space.

Each individual in the population determines the pro-
posed values for the variables of the problem. Therefore, a
value for the objective function is determined for each indi-
vidual in the population. The obtained values for the objec-
tive function are represented using the vector of Equation 2:

F ¼

F1

⋮
Fi

⋮
FN

2
6666664

3
7777775
N×1

; ð2Þ

where F is the vector of objective function values and Fi is the
objective function value for the ith search factor.
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Based on the resulting values for the objective functions,
the population individuals are ranked from the best individ-
ual with the lowest objective function value to the worst
population individual with the highest objective function
value. The ranked population matrices and the ranked objec-
tive functions are obtained using Equations 3 and 4:

X ¼

XS
1

⋮
XS
i

⋮
XS
N

2
6666664

3
7777775
N×m

¼

xS1;1 ⋯ xS1;d ⋯ xS1;m
⋮ ⋱ ⋮ ⋰ ⋮
xSi;1 … xSi;d … xSi;m
⋮ ⋰ ⋮ ⋱ ⋮

xSN;d ⋯ xSN;d ⋯ xSN;m

2
66666664

3
77777775
N×m

;

ð3Þ

FS ¼
FS
1 min Fð Þ
⋮ ⋮
FS
N max Fð Þ

2
64

3
75
N×1

; ð4Þ

where XS is the ranked population matrix based on the value
of the objective function, XS

i is the tenth individual of the
ranked population matrix, xsi;d is the value of the problem
variable d obtained by the ith search factor from the ranked
population matrix, and FS is the ranked matrix.

For the CMBO model, the time complexity is Oðn2Þ :

owing to its iterative nature and the underlying processes
that examine pairwise relationships between entities in the
dataset. This makes it relatively efficient for sizable datasets,
as evidenced by our evaluations.

2.2. Objective Function Vector. In CMBO, we assume that
half of the population individuals with higher values for the
objective function comprise the mouse population, while the
other half of the population individuals with lower values for
the objective function comprise the cat population. Based on
this assumption, the populations of mice and cats are deter-
mined according to Equations 5 and 6, respectively.

M ¼

M1 ¼ XS
1

⋮
Mi ¼ XS

i

⋮
MNm ¼ XS

Nm

2
66666664

3
77777775
Nm×m

¼

xs1;1 ⋯ xs1;d ⋯ xs1;m
⋮ ⋱ ⋮ ⋰ ⋮
xsi;1 … xsi;d … xsi;m
⋮ ⋰ ⋮ ⋱ ⋮

xsNm;1
⋯ xsNm;d

⋯ xsNm;m

2
66666664

3
77777775
Nm×m

;

ð5Þ

C ¼

C1 ¼ XS
Nmþ1

⋮
Cj ¼ XS

Nmþj

⋮
CNc

¼ XS
NmþNc

2
66666664

3
77777775
Nc×m

¼

xsNmþ1;1 ⋯ xsNmþ1;d ⋯ xsNmþ1;m

⋮ ⋱ ⋮ ⋰ ⋮
xsNmþj;1 … xsNmþj;d … xsNmþj;m

⋮ ⋰ ⋮ ⋱ ⋮
xsNmþNc;1

⋯ xsNmþNc;d
⋯ xsNmþNc;m

2
66666664

3
77777775
Nc×m

;

ð6Þ

where M is the mouse population matrix, Nm is the number
of mice, C represents the cat population matrix, Nc is the
number of cats, and Cj is the fifth cat.

To update the search agents, changing the position of the
cats is modeled based on the natural behavior of the cats and
moving toward the mice in the first phase. The proposed
CMBO mathematical update is modeled using Equations 7
and 8.

Cnew
j : cnewj;d ¼ cj;d þ r × mk;d − I × cj;d

À Á
and j¼ 1 :Nc;

d ¼ 1 :m; k 2 1 :Nm; I ¼ round 1þ roundð Þ;
ð7Þ

Cj ¼
Cnew
j j Fc;new

j <Fc
J

Cj; j else

(
; ð8Þ

where Cnew
j is the new position of cat j, cnewj;d is the new value

for the variable d obtained by the jth cat, r is a random
number in the interval (0, 1), and mk;d represents the dimen-
sion d. Fc;new

j is the value of the objective function based on
the new position of the jth cat.

In the second step of the proposed CMBO, the escape of
mice to shelters is modeled. Our assumption in CMBO is
that there is a random shelter for each mouse. The position
of the shelters in the search space is randomly determined
based on the patterning of the positions of the different
individuals in the algorithm. This step of updating the posi-
tion of mice is mathematically modeled using Equations 9
and 10:

Mnew
i :mnew

i;d ¼mi;d þ r × hi;d − I ×mi;d

À Á
× sign Fm

i − FH
ið Þ and i¼ 1 :Nm; d ¼ 1 :m;

ð9Þ

Mi ¼
Mnew

i ; j Fm;new
i <Fm

i

Mi;j else

(
; ð10Þ
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where hi is the shelter for the i
th mouse and FH

i is the value of
its objective function. Mnew

i is the new position of the ith

mouse and Fm;new
i is the value of its objective function.

After updating all individuals of the algorithm population,
the algorithm enters the next iteration. According to Equations 5,
6, 7, 8, 9, 10, 11, and 12, the execution of the algorithm is repeated
until the stopping condition is reached. The stopping condition
of optimization algorithms can be based on a specified number
of iterations or a defined acceptable fault between the solutions
obtained in successive iterations. In addition, the stopping con-
dition of the algorithmmay be a certain period. After completing
the iterations and fully executing the algorithm on the optimiza-
tion problem, CMBO outputs the best quasi-optimal solution
obtained. The flowchart and pseudocode of the proposed
CMBO are presented in Figures 1 and 2, respectively.

2.3. Proposed Architecture. In Figure 3, our unique approach to
implementing the Apriori algorithm is illustrated. In the pro-
posed architecture, two parallel Nvidia graphics cards are used
instead of the CPU. Traditionally, the Apriori algorithm is
applied on an entire dataset immediately. However, our method
proposes applying the Apriori algorithm separately in two halves

of the dataset and then concatenating the results at the end. This
division and concatenation strategy offers several advantages:

(i) Efficiency in parallel processing: by dividing the
dataset into two, we can take advantage of parallel
processing capabilities, such as those provided by
multicore CPUs or multiple GPUs, to process both
halves concurrently, leading to a significant reduc-
tion in overall computation time.

(ii) Memory management: large datasets can be memory-
intensive when processed in their entirety. By splitting
the dataset, we reduce the memory overhead, making
the algorithm more manageable and scalable for even
larger datasets.

(iii) Enhanced accuracy: by processing the dataset in
halves, we may achieve more granular insights and
detect patterns that might be overlooked when the
dataset is processed as a whole.

(iv) Flexibility in analysis: this approach offers flexibility.
For instance, one can compare the results from the
two halves to understand any discrepancies or

Start CMBO.

Input problem information: variables, objective function, and constraints.

Set number of search agents (N) and iterations (T).

Generate an initial population matrix at random.

Evaluate the objective function.

Sort population matrix based on objective function value using Equations (3) and (4).

Select population of mice M using Equation (5).

Select population of cats C using Equation (6).

Phase 1: update status of cats.

Phase 2: update status of mice.

For j = 1 : Nc

For i = 1 : Nm

Create haven for the ith mouse using Equation (10).

Update status of the jth cat using Equations (7), (8), and (9).

Update status of the ith mouse using Equations (11) and (12).

End

End

End

End CMBO

Output best quasi-optimal solution obtained with the CMBO.

For t = 1 : T

FIGURE 1: Flowchart illustrating the operational steps of the proposed CMBO algorithm.
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anomalies in the data. Moreover, if one half of the
dataset has an issue (e.g., corrupted data), it will not
hinder the processing of the other half.

(v) Simpler aggregation: once the Apriori algorithm has
been applied to both halves, the results can be
concatenated. This aggregation step can further be opti-
mized based on the unique patterns derived from each
half, ensuring that the final output is comprehensive
and represents the entire dataset accurately.

In this research, the similarity evaluation criteria pro-
duced in [31] are used. As a result, a consistent set of rules
with minimal overlap is created. As mentioned before, sup-
port and confidence criteria [31] are defined according to
Equations 11 and 12:

Start CMBO.

Input information of optimization problem.

Set parameters of N, Nc, Nm, and T.

Create initial population.

Calculate objective function.

Update XS using Equations (3) and (4).

Select population of mice using Equation (5).

Select population of cats using Equation (6).

Phase 1: update Cj using Equations (7) and (9).

Phase 2: create Hi using Equation (10).

Phase 2: update Mi using Equations (11) and (12).

Output best quasi-optimal solution of the objective function found by CMBO.

End CMBO.

j ⩵ Nc?j = j + 1

i = i + 1

t = t + 1
j = 1
i = 1

No

No

No

Yes

Yes

Yes

i ⩵ Nm?

t ⩵ T?

FIGURE 2: Pseudocode representation of the CMBO algorithm.

Half of dataset

Half of dataset
Apriori algorithm

Rules

Final rules+

Rules

Apriori algorithm

Dataset

FIGURE 3: Architectural representation of the parallelized Apriori
algorithm using dual Nvidia graphics cards, illustrating data divi-
sion, concurrent processing, and results concatenation.
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Support rð Þ ¼ X ∪ Yj jT
Tj j ; ð11Þ

Confidence rð Þ ¼ Support X ∪ Yð Þ
Support Xð Þ : ð12Þ

The value of these two defined threshold-based criteria
must be greater than the specified threshold value. Also, each
particle/moth is defined as follows.

In Figure 4, the first moth B1 has two transactions, I2 and
I3, whose values are set to one, and the rest of the entries are
defined as zero.

In the algorithm, two first and fourth transactions have
been selected for B2, and three transactions (I2, I3, and I4)
have been selected for B3. The fourth moth also has only two
transactions, I2 and I4. Each moth is a representation of a
selection of transactions. The desired system in the proposed

architecture is parallelized using three GPUs, as shown in the
Figure 3. After the data is fed to the CPU, it is divided into three
equal parts, with each part assigned to a GPU. This three-way
division was chosen for several reasons. First, dividing data into
three parts offers a balance between parallel processing speed
and the management overhead associated with data distribu-
tion and subsequent integration.Dividing the dataset intomore
parts, like four or five, might lead to increased management
overhead and possible redundancy in the extracted rules,
reducing the efficiency of the parallel processing. Second, using
three GPUs allows us to maximize resource utilization while
ensuring that each GPU has a sufficiently large subset of the
data to process, enabling efficient extraction of rules. Last, from
a hardware perspective, our system configuration was best
suited to handle three GPUs, providing optimal power and
thermal performance (Figure 5).

Finally, GPUs extract the rules based on the proposed
algorithm and send them to the CPU after the screening with

T1

T2

T3

T4

I2 I2

I2

I2

I1

I1

0 0

0

0

0

1

1 1

0

1

1

1

1

1

1

1

B1

B1 0 01 1B2

B3

B4

I2 I4

I4

I4

I4

I3

I3

I3

FIGURE 4: An example of moths.

Third of dataset

Third of dataset

Third of dataset

Apriori algorithm

Apriori algorithm

Apriori algorithm

Rules

Rules

+

+

+
Rules

Final rules

Dataset

FIGURE 5: Parallel processing scheme with three GPUs.
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support and confidence. The CPU applies the union operator
to the rules obtained and displays them to the user. The rea-
son for the union operator is the possibility of duplicate offers.

3. Experimental Results

3.1. Setting. To prove the efficiency of running speed, we per-
formed a series of implementations of our proposed scheme
under different hardware configurations. First, the scheme was
executed solely on “one CPU.” Thereafter, we extended the con-
figuration to include “one CPU+ two GPUs”, harnessing the
added computational power of the graphics processing units.
Last, the scheme was executed in its full proposed format, opti-
mizing both the hardware and the algorithmic approach.

All these implementations were meticulously coded using
MATLAB 2017b, ensuring consistent experimental settings
throughout the evaluations. For a comprehensive assessment,
we used two distinct datasets to test the efficacy of our method.
The first dataset was sourced from the renowned UCI Machine
Learning Repository [32], and the second from the UA FIM
Repository [33]. Detailed specifications and results pertaining
to each dataset’s evaluation are presented in Tables 1 and 2,
respectively.

In the experiments, we leveraged Nvidia graphics cards
and Intel processor. Their technical details are outlined in
Tables 3 and 4.

3.2. Model Performance. We conducted a comparative anal-
ysis of the CMBO technique against other renowned optimi-
zation methodologies, including the genetic algorithm (GA),

particle swarm optimization (PSO), artificial bee colony
(ABC), and differential evolution (DE). Our findings suggest
that CMBO not only outperformed these techniques but also
showcased distinct advantages. Specifically, CMBO exhibited
faster convergence rates, indicating its efficiency in reaching
optimal or near-optimal solutions in a reduced timeframe.
Furthermore, its adept handling of local minima ensured
that the algorithm did not get trapped in suboptimal solu-
tions, thereby enhancing its robustness and reliability in
complex optimization landscapes.

The efficacy of the proposed technique was gauged using
three distinct algorithms, namely BSO, GBSO-Miner, and
BOA [31]. GBSO-Miner is an innovative approach built
upon the BSO framework, wherein every step of BSO,
from delineating the search perimeter, conducting a local
search, performing evaluations, to the dance sequence, is
executed on the GPU. To bridge the gap between each task
data input and GPU entities, an intricate mapping technique
is employed. An exhaustive array of tests presented in [31]
underscores the superior efficiency of the GBSO-Miner plat-
form when juxtaposed with benchmark methodologies from
academic literature, such as GPApriroi and MEGPU, partic-
ularly in the realm of text and graph database evaluations.
Several factors underscore the choice of these algorithms for
a comprehensive and fair comparison with the proposed
method. These include the swarm-centric essence of both
BSO and GBSO-Miner, the GPU-centric parallelism inher-
ent to GBSO-Miner, and its capacity to function seamlessly
across a multi-GPU infrastructure spread over a network of
nodes. Moreover, past records have illuminated the edge
GBSO-Miner holds over other conventional methods docu-
mented in academic literature.

Figures 6 and 7 present experimental outcomes derived
from the UCI machine learning datasets and the UA FIM
repository datasets, in that order. The data in Figure 6 sug-
gests that the method introduced in this study aligns closely
with the results yielded by the GBSO-Miner approach in five
distinct scenarios. Further analysis of Figure 6 indicates that
as transaction volumes escalate, there is a discernible dip in
accuracy. This decline can be attributed to the proliferation of
local minima, which is a consequence of heightened transac-
tion counts. Additionally, the frequency of iterations and the
peak GPU utilization duration emerge as constraints, dimin-
ishing the precision of the techniques when handling an
extensive volume of transactions. Figure 7 corroborates the
insights drawn from Figure 3 but pivots on the UA FIM
repository datasets. Given that the transactional volume
detailed in Table 2 substantially overshadows that of Table 1,
the accuracy of rule extraction dwindles more rapidly. Conse-
quently, when the novel method is deployed, there is an
enhancement in the quality, as reflected in the elevated per-
centage of accurate rule extraction across numerous instances.

In most cases, the proposed algorithm improves the qual-
ity regarding the percentage of correct detection of rules and
recommendations. Therefore, experiments expose the capa-
bilities and improvements of the algorithm. At the same
time, a new architecture was introduced to realize higher
processing speed. To demonstrate the quality, the proposed

TABLE 1: UCI machine learning datasets [32].

Name Number of transactions Number of items

Zoo 102 17
Lymphography 148 48
Soybean 683 36
Australian 690 60
Izmir weather 1,461 10
Segment 2,310 19
Splice 3,190 6
Nursery 12,690 9
House 16H 22,784 17
Connect-4 67,557 43

TABLE 2: UA FIM repository datasets [33].

Name Number of transactions Number of items

IBM-Quest-standard 10,000 40
Chess 3,196 75
Mushroom 8,124 119
PumbStar 40,385 7,116
MS-WebView-1 59,602 497
BMS-WebView-2 77,512 3,340
Korasak 80,769 7,116
Retail 88,162 16,469
IBM-Artificial 100,000 999
BMP-POS 515,597 1,657
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architecturewas implemented in “oneCPU”, “oneCPUplus two
GPUs”, and finally, “one CPU plus three GPUs” on the IBM-
Quest-standard dataset, and its speed was evaluated. Different
examples of architecture implementation all reached the same
quality and 100% accuracy (Table 5). For a better evaluation of
the output, the resulting running times are shown in Figure 8.

As shown in Figure 9, the architecture on “one CPU and
two GPUs” got a good running time, and the architecture on
“one CPU plus three GPUs” got the best running time.

In the above line plot, the difference between different
designs is visible. The comparison of the output of the fourth
design, i.e. “one CPU plus three GPUs” with “one CPU”, is

shown in Figure 10. According to the graph, the processing
time of the fourth design took about half of the processing
time on “one CPU”.

4. Discussion

This article proposed a novel approach to address the chal-
lenges in extracting frequent patterns from large datasets in
the realm of data mining, especially considering temporal
and spatial complexities. While recognizing the foundational
role of the Apriori algorithm, the study acknowledged its
limitations in handling voluminous datasets. To remedy

84

86

88

90

92

94

96

98

100

102

BSO

Co
nn

ec
t-4

H
ou

se
 1

6H

N
ur

se
ry

Sp
lic

e

Se
gm

en
t

Iz
m

ir 
w

ea
th

er

A
us

tr
al

ia
n

So
yb

ea
n

Ly
m

ph
og

ra
ph

y

Zo
o

GBSO-Miner
BOA
Apriori

Th
e p

er
ce

nt
ag

e o
f c

or
re

ct
 d

et
ec

tio
ns

FIGURE 6: Results on UCI Machine Learning datasets. The results for the methods BSO, GBSO-Miner, and BOA were obtained from [31].

TABLE 3: Technical specifications of the Nvidia graphics card used in the experiments.

Property GeForce GTX 950M Supports double 1

Compute capability 5.0 Multiprocessor count 5
Available memory 3.5125e+ 09 Total memory 4.2950e+ 09
Clock rate (KHz) 1,124,000 SIMD width 32
Driver version 8 Tool kit version 8
Max threads per block 1,024 Max shmem per block 49,152
Max thread block size (64 1024 1024) Max grid size (2.1475e+ 09 65535 65535)

TABLE 4: Technical specifications of the Intel processor card used in the experiments.

Name 6th Generation Intel® Core™ i7 processors

Processor number i7-6700HQ
Launch date Q3′15
Processor base frequency GHz 2.60
Max turbo frequency GHz 3.50
Cache MB Intel® Smart cache 6
Bus speed GT/s 8
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TABLE 5: Comparison of the four designs on the dataset.

CPU+ 3 GPU (s) CPU+ 2 GPU (s) CPU+ 1 GPU (s) CPU (s) Number of transaction

156.1 246.1 354.2 301.1 1,000
436.5 599.7 812.2 786.4 2,000
565.2 772.4 1,379.9 1,371.1 3,000
996.8 1,233.1 1,811.4 1,749.6 4,000
1,809.6 2,317.6 2,805.3 2,707.3 5,000
1,875.1 2,387.3 3,651.9 3,415.4 6,000
2,110.1 3,111.2 4,580 4,429.6 7,000
2,226.1 3,654.4 4,888.7 4,737.1 8,000
2,555.2 3,815.3 5,154.6 5,100.2 9,000
2,789.8 4,190.6 6,017.7 5,841.8 10,000
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FIGURE 7: Results on UA FIM repository. The results for the methods BSO, GBSO-Miner, and BOA were obtained from [31].
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this, the research unveiled an innovative method harnessing
the power of parallel network topologies and GPU architec-
tures. Central to this proposal were two main elements: first,
the employment of parallel processing to facilitate faster attain-
ment of ideal outcomes, and second, integrating the CMBO
algorithm. The latter, inspired by the natural chase dynamics
between feline predators and their rodent prey, operates on a
two-stage paradigm: an initial chase phase led by the cats fol-
lowed by a strategic evasion stage orchestrated by the mice.
Agents in this model were further distinguished based on their
objective function evaluations. Additionally, the proposed sys-
tem design effectively incorporated dual Nvidia graphics cards
in tandem, offering a performance edge over traditional CPU
setups. Collectively, the advanced method not only addressed
the shortcomings of the Apriori algorithm but also augmented
the efficiency in deducing association rules and discerning
recurrent patterns with heightened accuracy. An exhaustive
assessment across diverse network topologies was undertaken,

explaining the strengths and weaknesses of each. When juxta-
posed with the Apriori benchmark, the proposed technique
exhibited superior performance both in rapidity and profi-
ciency, marking a pivotal advancement in data mining.

Given the complexities and requirements of our problem,
we sought an optimization technique that could aptly model
intricate behaviors. The CMBO, inspired by the natural beha-
viors of cats andmice, offered a novel approach to this. Its two-
phase movement modeling, cats moving towards mice and
mice evading to safety, aligned well with our problem dynam-
ics. Additionally, the adaptability of CMBO to diverse environ-
ments and its balance between exploration and exploitation
provided an edge over traditional optimization methods. As
cats naturally possess the ability to adjust their hunting strate-
gies based on the behaviors of mice, this flexibility ensured that
the model could dynamically adjust its search pattern in the
solution space. Moreover, the interaction between cats and
mice inherently leads to a continuous refinement of strategies
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on both ends, making it a robust mechanism to avoid local
optima. By leveraging this dual-aspect movement of attraction
and evasion, the CMBO ensures that potential solutions are not
just local but are examined in a global context. Additionally, the
diversity exhibited by different cats and mice in their hunting
and evasive strategies adds a unique element of parallel search
pathways. This diversity further ensures that the optimization
does not stagnate, and there is always a fresh perspective to
approach the problem. Furthermore, the natural competitive-
ness among the cats to catch the mice and the urgency of the
mice to evade capture introduces a time-sensitive dynamic,
making the CMBO more efficient in finding an optimal or
near-optimal solution in shorter time frames.

As association rule mining on GPUs gains prominence, it
becomes crucial to address the conspicuous absence of the
Apriori algorithm’s implementation on GPU with CUDA
and the GBSO-RSS algorithm within this research. Each pro-
posed methodology carries inherent merits, suggesting poten-
tial advances in computational efficiency and accuracy. The
transformative nature of GPU technology has undeniably
reshaped the data processing paradigm, propelling GPUs to
the forefront of high-performance computing. However, this
investigation was deliberately tailored to delve deep into the
confluence of cat-and-mouse optimization and the Apriori
algorithm. Our objective was to navigate the myriad benefits
this hybrid approach can offer, thus contributing a nuanced
perspective to association rule mining. While the benefits of
GPU-centric computations are substantial, one must be wary
of the complexities they introduce. Potential hurdles, such as
managing memory limitations and navigating specialized
programing frameworks, can often temper the enthusiasm
of direct adoption. While the GBSO-RSS’s robust capabilities
are laudable, its integration did not align seamlessly with the
research’s foundational goals. It is pertinent to recognize that
in the dynamic realm of association rule mining, no singular
technique can assert absolute dominance. This opens avenues
for future research to weave together the capabilities of vari-
ous methodologies, potentially ushering in a new epoch
marked by unmatched computational efficacy and precision
in association rule mining pursuits.

The preference for the GTX 950M over more recent
GPUs, such as Nvidia’s RTX series which boasts notably
enhanced performance metrics over its predecessor, is rooted
in several considerations. Foremost, the GTX 950M offers an
ideal balance between performance and cost-efficiency, estab-
lishing it as a favored option for a broad range of researchers
and professionals. Although RTXGPUs offer undeniable per-
formance superiority, they come with a steeper learning curve
due to their avant-garde technologies and features—some of
which may exceed the immediate needs of our study. It was
also essential to align with previous studies, many of which
potentially employed the more widespread GTX 950M GPU.
That said, the cutting-edge functionalities of RTX GPUs
underscore a valuable direction in data mining, meriting thor-
ough investigation in future research pursuits.

The decision to employ the 6th Generation Intel Core i7
Processors, instead of more recent options like the 13th Gen-
eration Intel Core i7, was influenced by several factors. First

and foremost, the reliability and performance of the 6th
Generation Intel Core i7 have been well-established, and it
effectively serves the computational requirements of our study
without incurring undue expenses. In addition, by selecting
this processor, we strived to ensure our research remains con-
gruent with existing benchmarks, fostering both compatibility
and the ability to be juxtaposed with a wide range of prior
research that predominantly relies on this generation. It’s
also worth noting that transitioning to cutting-edge hardware,
such as the 13th Generation Intel Core i7, might bring about
unexpected challenges, from navigating new configurations to
potential compatibility concerns, which could detract from
our primary research objectives.

The model we proposed emerges as a multifaceted instru-
ment, holding promise for a wide array of image processing
undertakings. Its efficacy becomes especially salient in the
realm of image retrieval systems, where it acts as a potent
preprocessing conduit. Existing literature encompasses myr-
iad pivotal studies that align seamlessly with our approach.
Notably, the work presented in [34] ventures into the domain
of intricate image reconstruction methodologies. Such meth-
odologies could derive substantial advantages from sophisti-
cated preprocessing paradigms, akin to the one we introduce.
Similarly, the study highlighted in [35] provides a compre-
hensive examination of the intricate relationship between tex-
ture and color features, pivotal in image retrieval processes.
The distinct attributes of our proposed model stand in a posi-
tion to synergize with and augment the insights from these
studies. In concert, these investigations serve not only as a
testament to the significance and potential of our model but
also chart a promising course for ensuing research endeavors,
underscoring the model’s adaptability to a diverse range of
application spheres.

5. Conclusion

The expansion of the web and the proliferation of available
information have made it necessary to have appropriate tools
for data classification, providing users with desired data, and
changing the type of information provided based on the
needs of users. The purpose of extracting information from
web data is to facilitate the use of the web by users, quick and
easy access to information, and help designers and informa-
tion providers to supply the best services to users with the
least cost and get the most benefits. None of these objectives
can be achieved except through an automatic information
extraction system or a recommender system. In this study, a
new algorithm based on CMBO was presented to detect
suggested items with better quality than other samples. The
results related to the detection percentage of the correct rules
by the CMBO method showed that the quality of the algo-
rithm is better or equal to the classic methods including
Apriori, BSO, and GBSO-Miner.

In addition, the test results proved that processing with
“three parallel GPUs under one CPU” is much faster than
processing with “one CPU”. According to the displayed
graphs, the processing time of the proposed architecture is
about half of the processing time on “one CPU”. Therefore,
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in the first stage, it is quite evident that the processing speed
of the proposed architecture is higher. The time complexity
is divided by the number of GPUs. Also, the time complexity
of the cat-and-mouse optimization algorithm is n2. The
memory required for the cat-and-mouse algorithm is negli-
gible. The memory required for the parallelization part is
almost the same as the memory required in “one CPU”.
One of the limitations of this study is the difficulty of net-
working GPUs and the need for a special model for this
purpose. The use of more GPUs in the cloud computing
platform is suggested for future work.

In future work, we envision delving deeper into the inte-
gration of deep learning techniques to further revolutionize
the extraction of frequent patterns from extensive datasets.
Deep learning, with its unparalleled capacity to handle vast
amounts of unstructured data and unearth intricate patterns,
offers promising avenues to amplify the capabilities of our
current model. Neural networks, particularly convolutional
and recurrent architectures, could be adeptly tailored to han-
dle the temporal and spatial dimensions of data, offeringmore
nuanced insights into pattern recognition. Additionally, the
fusion of CMBO with deep learning models might enable the
algorithms to not just mimic instinctual dynamics, but also
learn and adapt from the data itself, ensuringmore robust and
adaptable solutions. Exploring the synergy between GPU-
accelerated parallel processing and deep learning architec-
tures will be central to this endeavor, aiming to achieve
unprecedented speeds and accuracies in frequent pattern
extraction. Ultimately, by merging the power of CMBO and
deep learning, we aspire to establish a novel paradigm in data
mining, one that seamlessly marries intuition with computa-
tional prowess.
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