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Federated learning-based medical data privacy sharing can promote the development of medical industry intelligence, but limited
by its own security and privacy deficiencies, federated learning still suffers from a single point of failure and privacy leakage of
intermediate parameters. To address these problems, this paper proposes a privacy protection framework for medical data based on
blockchain and cross-silo federated learning, using cross-silo federated learning to establish a collaborative training platform for
multiple medical institutions to enhance the privacy of medical data, introducing blockchain and smart contracts to realize
decentralized federated learning to enhance trust between distrustful medical institutions and solve the problem of a single point
of failure. In addition, a secure aggregation scheme is designed using threshold homomorphic encryption to prevent the privacy
leakage problem during parameter transmission. The experimental and analytical results show that the accuracy of this paper’s
scheme is consistent with the original federated learning scheme, effectively deals with the problems of single-point failure and
inference attacks of federated learning, improves system robustness, and is suitable for medical scenarios with more stringent
requirements on security and accuracy.

1. Introduction

With the booming development of emerging intelligent tech-
nologies, the healthcare industry is rapidly developing and
gradually entering the era of intelligence. At this stage, medical
data with explosive growth characteristics can help healthcare
professionals use AI applications to better diagnose diseases,
but the data of individual medical institutions cannot meet the
needs of AI applications, and at the same time, because of the
low level of trust among medical institutions and the large
amount of patient privacy information contained in medical
data, there is data isolation among medical institutions, and
the noncirculation of medical data makes the collection of
medical data very difficult. In addition, legal access to data
has become a worldwide trend, and several countries, includ-
ing China, have proposed bills to regulate data collection,
emphasizing the legality of data sharing. Therefore, reason-
able and legal access to medical data has become a hot topic of
current research.

Federated learning (FL) [1, 2] is a distributed collabora-
tive learning model that does not require a centralized col-
lection of users’ private data for training but only requires
users to train on local datasets and upload the trained local
models to an aggregator, through which the local models are
aggregated to generate a new global model. Depending on
the initial setup, federated learning can be divided into cross-
device federated learning and cross-silo federated learning
[3]. Among them, cross-silo federated learning allows a small
number of organizations to collaborate with institutions to
train machine learning models. The emergence of federated
learning has opened up new horizons in the field of artificial
intelligence, and cross-silo federated learning helps to break
the data isolation among medical institutions, better interact
with medical privacy data, and promote the development of
intelligence in the medical industry.

However, there are a number of challenges in applying
federated learning technologies in the healthcare field.

The first is the trust issue. Since the participants of fed-
erated learning come from different medical institutions and
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lack trust among themselves, it is especially important to
establish a secure cooperation mechanism in the absence of
trust. Second is the single point of failure problem. The fed-
erated learning framework uses a fixed central server as an
aggregator, which can cause this training to fail due to possi-
ble security attacks on the device and damage to the physical
equipment. Finally, there is the inference attack, where the
central server can analyze and derive the user’s raw data from
the local model updates provided by the trainer during the
training process, which can expose the patient’s privacy.

Blockchain is transparent, tamper-evident, and auditable
[4], which can provide a trusted platform for federated learn-
ing and solve the single point of failure problem. Blockchain
is essentially a distributed ledger that uses cryptographic tech-
niques to secure data on the chain while building a safe and
secure data-sharing platform for multiple untrustworthy par-
ticipants through its use of consensus mechanisms, smart
contracts [5], and other technologies. However, the data
recorded in the blockchain is open to the whole network,
and curious participants can easily access the required data
from the blockchain, increasing the risk of data leakage.

Homomorphic encryption is a cryptographic technique
that enables computation on encrypted data and is widely
used in scenarios where data privacy computation needs
exist, such as blockchain and federated learning. However,
the application of original homomorphic encryption in fed-
erated learning relies on the honesty of the key holder, and
the node with the private key of homomorphic encryption
can easily decrypt the encrypted data, which can compro-
mise the data privacy of the training participants.

To solve the problem of medical privacy data sharing
among medical institutions, this paper introduces blockchain
into cross-silo federated learning to provide a trusted plat-
form for medical institutions that do not trust each other and
uses smart contracts to regulate the federated learning process
and select appropriate aggregators for secure aggregation of
local models to achieve decentralized federated learning. In
addition, a threshold Paillier cryptosystem [6] is used to address
possible inference attacks during the training process and to
ensure data privacy during parameter delivery.

The contributions of this paper are summarized as follows:

(1) A privacy protection framework for medical data based
on blockchain and federated learning is proposed,
which not only provides a secure and trustworthy
data-sharing platform formedical data but also makes
it tamper-proof and auditable.

(2) A secure aggregation scheme based on threshold
homomorphic encryption is designed to ensure the
secure aggregation of model parameters and prevent
local model parameters from leaking local data pri-
vacy during the transmission process.

(3) A smart contract for secure upload and aggregation
node selection of local model parameters is designed
to solve the single point of failure problem in the
federated learning process through the dual guaran-
tee of blockchain and smart contract. And the IPFS

file system [7] is used to reduce the storage pressure
of the blockchain.

(4) The framework proposed in this paper is tested and
evaluated to demonstrate that it improves the privacy
and security of medical data sharing while maintain-
ing accuracy with the traditional federated learning
scheme.

2. Related Work

2.1. Federated Learning in the Medical Field. Federated learn-
ing has been widely used to break down “data silos” among
medical institutions and share private patient data for medi-
cal research. Brisimi et al. [8] developed a federated learning
model for predicting future hospitalizations of cardiac patients
without interacting with the user with raw data. Silva et al. [9]
proposed a federated learning framework for securely acces-
sing any biomedical data without sharing personal informa-
tion. Sheller et al. [10] applied federated learning to healthcare
to facilitate collaboration amongmultiple healthcare providers
while protecting patients’ medical data. Zhang et al. [11]
designed a dynamic fusion-based federated learning system
architecture to analyze COVID-19 medical diagnostic images.
Rieke et al. [12] analyzed how federated learning can provide
solutions for the future of digital health and highlight factors to
consider in practical applications. Darzi et al. [13] investigated
federated learning for adversarial attacks in the field of medical
image analysis and charted the future of federated learning. All of
these works use federated learning to improve the security of
medical data sharing but do not consider the privacy and secu-
rity issues that exist with federated learning technology itself, and
the security and privacy of patient data remain a threat.

2.2. Privacy Protection for Federated Learning. While the
original data are kept local to the participants during the
federated learning process, the local model parameters passed
during the training process may still reveal patient privacy.
Melis et al. [14] demonstrated that sensitive information in
federated learning local model updates can be obtained
through inference attacks. Hitaj et al. [15] devised an attack
by using a generative adversarial network (GAN) to obtain
sensitive information from local model parameters that have
been used for differential privacy. An adversarial network
(GAN) can obtain sensitive information from local model
parameters where differential privacy has been used.

The main existing privacy-preserving methods for feder-
ated learning are Homomorphic Encryption (HE) and dif-
ferential privacy (DP). Shokri et al. [16] proposed that using
differential privacy in deep learning model parameters can
improve its privacy but will reduce the accuracy of the model.
Wu et al. [17] proposed a federated learning scheme based
on differential privacy with an adaptive gradient descent
strategy to improve efficiency in multiparty computation
scenarios while enhancing the privacy of federated learning.
Wang et al. [18] proposed a noninteractive federated learn-
ing framework, which improves federated learning privacy,
but its improved Paillier homomorphic encryption scheme leads
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to the necessity of keeping all nodes up and running during
federated learning without having down or offline nodes, which
will reduce federated learning robustness. Park et al. [19] consid-
ered single-key homomorphic encryption used in federated
learning with low security and designed a privacy-preserving
federated learning algorithm that aggregates the local model
parameters of different HE key encryptions but increases the
resource consumption of homomorphic encryption. Tawose
[20] focused on the security of incentives in federated learning
systems and proposed a homomorphic encryption algorithm
called RHE. Ma et al. [21] proposed a new privacy-
preserving federated learning scheme that enhances the fed-
erated learning framework privacy by using the xMK-CKKS
multikey homomorphic encryption protocol. Overall, using
differential privacy to enhance federated learning privacy
requires adding noise to the model or data, which inevitably
affects the final usability of the model and has insufficient
privacy. In contrast, using homomorphic encryption in fed-
erated learning does not affect the final usability of the
model, but it increases resource consumption, and there is
a security problem with single-key homomorphic encryption
applied to federated learning, where an aggregator with a
private key can decrypt all local model parameters encrypted
using the corresponding public key by the private key.

2.3. Blockchain-Based Federated Learning. In response to the
single point of failure, data security, and node multiparty
trust problems of federated learning, some works introduced
blockchain into federated learning. Qammar et al. [22] have
systematically organized the current integration of block-
chain in federated learning with an in-depth study of the
existing security issues, traceability, reward, and punishment
mechanisms. Javed et al. [23] proposed a scheme called Share-
chain for the healthcare data privacy problem, which uses
blockchain as an infrastructure and empowers the blockchain
with federated learning and local differential privacy to enable
the secure sharing of healthcare data. Rifai et al. [24] proposed
a blockchain-based medical federated learning framework to
achieve decentralized federated learning by aggregating local
models of federated learning through smart contracts but did
not focus on the current bottlenecks of blockchain and smart
contracts. Awan et al. [25] proposed a blockchain-based privacy-
preserving framework for federated learning, using homo-
morphic encryption and proxy re-encryption techniques to
protect data privacy, but it did not consider the single point of
failure of aggregators. Zhang et al. [26] designed a reputation
evaluation mechanism for federated learning, using the qual-
ity of model parameters as an important indicator for select-
ing trainers and aggregators. Kim et al. [27] addressed the
existence of a single point of failure problem by introducing
blockchain in federated learning, but it ignored the privacy
problem of federated learning itself. Zhang et al. [28] pro-
posed a blockchain-based medical federated learning frame-
work and protected patient data privacy by adding differential
privacy noise, but the addition of differential noise would
reduce the accuracy of the final global model. Majeed et al.
[29] constructed a secure and reliable federated learning plat-
form using Ethereum; however, its use of a single-key

homomorphic confidentiality technique does not satisfy data
privacy during data model delivery. Wang et al. [30] proposed
a blockchain-based access control mechanism and a federated
learning framework for genome-wide association studies, which
enhances the security of medical data sharing through the
mutual empowerment of blockchain and federated learning
and the use of differential privacy techniques. Feng et al. [31]
proposed an asynchronous federated learning framework based
on blockchain to address the security and efficiency issues of
federated learning frameworks, which achieves the nontamper-
ability of the federated learning training process through block-
chain and accelerates the aggregation process of global models
through asynchronous learning. Issa et al. [32] investigated a
blockchain-based federated learning framework for IoT security
issues, showed the role of blockchain as well as smart contracts in
a federated learning framework, and discussed the security issues
related to integrating blockchain and federated learning in IoT.
Qu et al. [33] investigated the problems of single point of failure
as well as incentives in federated learning and showed that block-
chain can improve the performance of federated learning from
several perspectives. Chen et al. [34] proposed a data-sharing
privacy preservation model based on blockchain and federated
learning for addressing the privacy and integrity of user data.

In summary, most of the existing studies on medical data
sharing based on federated learning ignore the privacy issues
that exist in themselves and the impact of noise errors on the
global model. In addition, in the joint framework of block-
chain and federated learning, some studies do not consider
the computational and storage limitations brought by the
introduction of blockchain and the single point of failure
risk brought by the fixed aggregator selection.

3. Materials and Methods

3.1. Overview

3.1.1. System Model. For federated learning in medical sce-
narios, this paper chooses to use both blockchain technology
and homomorphic cryptography to enhance the security
and privacy of the medical federated learning framework.
As shown in Figure 1, this paper is divided into two phases:
the initialization phase and the federated learning training
phase; where the initialization phase includes the acquisi-
tion of keys and the release of smart contracts, which are
mainly for the overall preprocessing of the upcoming fed-
erated learning tasks; followed by the federated learning
phase, which is mainly for the federated learning training
and encryption and decryption. The scheme in this paper
consists of four entity roles: task publisher, care delivery
organization, trusted authority, and aggregator.

Task publisher (TP): It is the initiator of the training task and
also a node in the blockchain, which needs to use the IPFS file
system for global model storage. The task publisher needs to
publish tasks on the blockchain through smart contracts and
verify the accuracy of the final model using local test datasets.

Care delivery organization (CDO): CDO is a federated
learning task participant that has its own training dataset to
train a local model by global model parameters obtained from
the blockchain network and encrypt the local model
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parameters by obtaining PK through a smart contract. In
addition, CDO can obtain SKCDOi from TA and partially
decrypt the global aggregated model. Eachmedical institution
is a node in the blockchain network and uses the IPFS file
system for local model storage.

Trust authority (TA): A fully trusted third party is responsi-
ble for honestly executing the cryptographic algorithm,
uploading the public key PK for local model encryption via
a smart contract, and distributing the homomorphic encryp-
tion key SKCDOi, to the data owner, while fairly selecting the
federated learning aggregation nodes by invoking the smart
contract.

Aggregator: It is a CDO randomly selected by TA from
the CDOs participating in this training to collect all the local
models for this training round and perform aggregation. In
the aggregator selection, each CDO may become an aggre-
gator for this training round. In addition, the aggregator has
to collect the partially decrypted models from the CDOs and
perform the final model decryption.

3.1.2. Threat Model. Some possible security issues in the
scheme are analyzed and discussed in this paper.

(1) Potential privacy leakage: For commercial interests,
each CDO in the federated learning training process
will be curious about the local training data of other

CDOs and make efforts to obtain the data of other
CDOs, even through some illegal means, e.g., infer-
ence attacks.

(2) Aggregation attack: During the process of aggrega-
tion and decryption of model parameters, an illegal
attacker may attack the aggregator that is performing
the aggregation operation or the CDO that is per-
forming the decryption to disrupt the federated learn-
ing training process.

(3) Collusion attack: When T CDOs in the system exceed
a threshold value for collusion, they can then decrypt
the encrypted local model parameters of the uploaded
blockchain by combining them into a complete pri-
vate key through subkeys.

To implement the scheme in this paper, we make the
following assumptions. First, since the data owners are all
medical institutions, which are limited in number, and the
ultimate goal of all participants is to train a high-precision
medical model for use in real-world scenarios, we assume
that all medical institutions involved in the training are hon-
est but curious. Specifically, during the training process, each
medical institution will do its work honestly and will not
engage in poisoning behaviors that affect the training accu-
racy of the model. Second, it is assumed that each medical
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FIGURE 1: System framework.
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institution has sufficient computational power to make the
appropriate calculations within the specified time and that
the medical institutions are secure in the process of data
upload. Finally, this paper does not consider the problem
of a possible single point of failure of TA, which will perform
the key distribution work safely and securely.

3.2. Distributed Medical Federated Learning Framework. In
the medical federated learning framework, each federated
learning task is published by a task publisher and trained
collaboratively by M medical institutions, and each medical
institution CDOi has its own dataset Di. At the beginning of
training, TA assigns weights according to the amount of data
each CDO has, and when assigning keys, since the scheme of
this paper targets a small number of medical institutions,
SKCDOi are assigned directly to medical institutions participat-
ing in the federated learning training. In addition, considering
that the blockchain platform used in this paper is Ethereum
[35], which does not allow carrying parameters for transactions
initiated by ordinary accounts to ordinary accounts, it is neces-
sary to design smart contracts to upload the model parameters
to the blockchain. The specific process is shown in Figure 2.

3.2.1. Program Process. Step 1: Registration and smart con-
tract deployment. When new medical institutions and task
publishers join the network, they need to send a registration
request to TA, which includes their address, the type, and
amount of data they have. TA deploys smart contracts, which
mainly include aggregation node selection, etc. The smart
contract is shown in Algorithm 1.

Step 2: Task publishing. The task publisher first uploads the
initial global model parameters and other related information to
IPFS and records the hash value returned by IPFS into the
blockchain through a smart contract. At the same time, the
TA randomly selects one of the CDOi participating in this
training as the aggregation node.

Step 3: Key generation. In the global epoch t, TA honestly
executes the threshold homomorphic encryption [6] algo-
rithm to generate the homomorphic encryption key and
public key.

TA randomly selects two strong prime numbers, p and q,
and computes n¼ pq. where p and q satisfy p¼ 2p0 þ 1 and
q¼ 2q0 þ 1, gcdðn;φðnÞÞ¼ 1. Let m¼ p0q0 and β be a ran-
domly chosen element in Z∗

N Then TA randomly selects ða;
bÞ 2Z∗

n ×Z∗
n and let g¼ð1þ nÞa × bnmodn2, g2Z∗

n2 . Let
SK¼ βm, set θ¼ LðgβmÞ¼ aβm and PK consists of g, n, and
θ. PK is sent to the blockchain via smart contracts.

Step 4: Key sharing. TA uses Shamir scheme [36] for
sharing the key SK, let a0 ¼ βm, TA randomly selects T
values {0; 1; 2; ;……; n×m− 1} from {a1; a2;……; aT} and
constructs a polynomial f ðxÞ¼ aTxT þ…þ a2x2 þ a1x1 þ
a0. Then, TA calculates SKCDOi ¼ f ðiÞmodnm, for the ith
CDO and sends SKCDOi to the CDOs involved in training,
respectively.

Step 5: Local training. In the global epoch t, each health-
care organization CDOi trains the local model LMðiÞ using
the local dataset Di. If it is the first epoch, the initial global
model parameter IGM is used for training; otherwise, the
local model is trained using the DGM from the previous

round, where ni is the total number of samples in dataset
Di and n¼∑M

i¼1ni denotes the total number of all samples of
participants. The loss function for each participant is FiðωÞ
¼ 1

ni
∑r2Di

frðωÞ, frðωÞ is the loss of a single data point, and
the model parameters are updated as follows:

ωi
t ¼ ωi

t−1 − ηirFi ωi
t−1ð Þ; ð1Þ

LM ið Þ ¼ ni
n
ωi
t ; ð2Þ

where ωi
t−1 denotes the initial model parameter IGM or

the global model parameter DGM decoded in the previous
round, ηi denotes the learning rate of the ith participant, and
rFiðωi

t−1Þ denotes the gradient of the ith participant.
After the training is completed, CDOi encrypts the trained

LMðiÞ using PK, randomly selecting xi 2Z∗
N and computing

the ciphertext.

ELM ið Þ ¼ E LM ið ÞÀ Á¼ gLM ið Þ
xinmodn2: ð3Þ

After that, ELMðiÞ is uploaded to the IPFS file system, and
then the hash returned by IPFS and other related data are
added as transactions and uploaded to the blockchain.

Step 6: Model parameter aggregation. After waiting for a
preset time t0, the aggregation node aggregates all encrypted
local model parameters ELMðiÞ, obtains the EGM and
uploads it to the IPFS file system, and then adds the hash
returned by IPFS and other related data as transactions and
uploads them to the blockchain. The aggregation process is
as follows:

EGM¼ ∏
M

i¼1
ELM ið Þ ¼ g∑LM ið Þ ∏xið Þnmodn2 1 ≤ i ≤Mð Þ :

ð4Þ

Step 7: Partial decryption of model parameters. each
CDOi gets EGM from the blockchain and partially decrypts
it using SKCDOi:

PGM ið Þ ¼ EGM2M!SKCDOimodn2: ð5Þ

After that, the decrypted PGMðiÞ is uploaded to IPFS, and
then the hash value returned by IPFS is uploaded to the
blockchain through a smart contract.

Step 8: Final decryption: the aggregation node collects the
PGMðiÞ uploaded by CDOi, if the collected PGMðiÞ is less
than the threshold T then the final decryption result cannot
be obtained, i.e., the aggregation update of this round, oth-
erwise let S be the set with at least T PGMðiÞ, we call the
partial decryption in S as PGMðjÞ and obtain the final decryp-
tion result DGM in the following way:
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DGM¼ ∑
M

i¼1
LM ið Þ ¼ L ∏

j2S
PGM jð ÞÀ Á2μSj modn2×

 !
4 M!ð Þ2θð Þ−1modn;

ð6Þ

where LðxÞ¼ x−1
n , μSj ¼M!× ∏

j02Sfjg

j0

j0 − j
2Z.

Step 9: Model update. CDOi fetches the latest global
model parameters from the blockchain and updates the local
model parameters for training.

The above process is repeated until the model converges,
or reaches the required accuracy, or reaches the set number
of training rounds.

4. Evaluations and Discussion

To evaluate the effectiveness of the solution, we conducted
local simulations. The simulation experiments were con-
ducted under Windows 11 system environment with the
hardware configuration of AMD R7-5800H CPU, RTX3060
GPU, and 16GB RAM. Federated learning collaborative
training is implemented using the PyTorch machine learning
framework, and the training model is a logistic regression
model that is widely used for disease prediction. For tabular
data, the diabetes dataset [37] and the breast cancer dataset
[38] are chosen for the experimental test dataset, and for
image data, theMNIST dataset [39] is used for the test dataset,

TP TACDO Aggregator SCIPFS

1.1 Register
1.2 Deploy smart contract

2. Task_Publish

4. Key request and distribution

6.1 Locally trained and encrypted to obtain ELMi

3. Select aggregator

7. Get the encrypted
    local model ELMi

8. Aggregation

9.Upload EGM

10. Get the encrypted
      global model EGM

11.1 Partially decrypted to obtain PGM

5. Get IGM or DGM

Loop
Time or accuracy

13. Get PGM

14.Obtain and upload
     DGM

6.2 Upload ELMi

11.2 Upload PGM

FIGURE 2: System timing diagram.
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which is widely used in machine learning, and the above 80%
of the data in the dataset is used for training, and 20% of the
data are used for testing. In addition, the part involving smart
contracts is processed using Solidity language. In order to
analyze the practicality of the solution in this paper, the smart
contracts designed in this paper are written and debugged on
REMIX IDE, and the Ethernet blockchain is built locally by
Truffle and Ganache.

In the experimental section, the scheme of this paper is
compared with those of literatures [24, 28], which are both
blockchain and federated learning-basedmedical data sharing
schemes, where literature [24] uses smart contract technol-
ogy and literature [28] uses differential privacy technology,
respectively.

4.1. Accuracy. The dataset used in this article will be distrib-
uted across three different CDOs, and their respective medi-
cal data will be shared through federated learning. As shown
in Figures 3 and 4, the accuracy and corresponding loss curves
of the diabetes dataset, breast cancer dataset and MNIST
dataset after three different CDO trainings are respectively
shown. From Figure 3, it can be seen that the accuracy of
the global model trained by the federation gradually exceeds
that of a single CDO as the number of iterations increases.
This is because as the number of CDOs increases, the total
data volume also increases, resulting in an increase in the
final accuracy of the global model. Moreover, compared to
machine learning, federated learning has better privacy. As
shown in Figure 4, the overall training process gradually
stabilizes after 50 epochs. Generally speaking, as the loss
value of each CDO training decreases, its corresponding
accuracy will continue to increase. However, after a certain
epoch, the accuracy tends to a constant value, but the loss will
continue to decrease until it also tends to a constant value, and
the training process tends to stabilize.

In addition, as shown in Figure 5, the scheme in this paper
chooses to use homomorphic encryption to continue to enhance
the privacy of federated learning, and by comparison, the
accuracy of the scheme in this paper using threshold homo-
morphic encryption is essentially the same as the scheme in
the literature [24] that does not use privacy enhancement
methods, and is more accurate than the scheme in the litera-
ture [28] that uses differential privacy, so the homomorphic
encryption used in this paper method used in this paper does
not affect the federated learning accuracy and will further
enhance the privacy of federated learning.

4.2. Time Performance. In the scheme of this paper, the use of
threshold homomorphic cryptography, as well as blockchain
technology, adds additional time consumption compared to
traditional federated learning. For each of these two techni-
ques, this paper presents an analysis.

4.2.1. Homomorphic Encryption. Compared with the schemes
in the literatures [24, 28], the main time consumption of the
scheme in this paper partly comes from the use of threshold
homomorphic encryption technique, which will increase the
time consumption to a certain extent, but the security will be
improved to a greater extent, please see Section 4.5.2 for
detailed security proof.

As shown in Table 1, the encryption and decryption time
of the used threshold Paillier encryption system is measured
in this paper. From Table 1, it is easy to see that the time
consumption of the homomorphic encryption technique is
related to the size of the data, and the larger the data volume
of a single piece of data, the more time resources it consumes.
For example, the MNIST dataset, which can be represented
by a 2D array of 28× 28 with a total of 784 feature values for
one of the images, has a large data volume, so the encryption
and decryption process takes longer time, while the Diabetes
dataset has less number of feature values, so the encryption
and decryption time consumption is less.

The encryption process of the homomorphic encryption
scheme used in this paper takes less time, while in the
decryption process, the threshold Paillier encryption system
requires a higher number of CDOs than the threshold for
partial decryption, and then the aggregator for final decryp-
tion, so it takes a longer time. Although the decryption pro-
cess of the threshold Paillier system takes longer, it solves the
problem of insufficient privacy caused by a single pair of keys
in the application of the original Paillier system to federated
learning and improves the overall privacy and robustness of
the federated learning system. In addition, the key length of
the scheme used in this paper is 1,024 when encrypting the
model parameters.

4.2.2. Throughput Rate. Another part of the time consump-
tion comes mainly from the use of blockchain technology.
This paper uses the ethernet platform to build smart con-
tracts, but the TPS (transaction per second) of the ethernet
platform is low, only about 14 TPS, which greatly limits the
efficiency of this paper. In a practical deployment, CDOs can
jointly maintain a federated chain, which will use a consensus
mechanism that is more efficient than the Ethernet platform

Input: AddCDO
Output: AggCDO
procedure confirm()

if confirm trans.sender is not CDO then

throw

else

Save AddCDO to AddCDO[]

end if

end procedure

procedure select()

if select trans.sender is not TA then

throw;

else

r= random (block.timestap, block.diffculty, CDO.length)

select. AggCDO ¼AddCDO½r�
end if

end procedure

ALGORITHM 1: SC.
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and can achieve higher throughput rates. In a blockchain that
can use smart contracts, TPS is mainly related to the Gaslimit
of a single block, the block time interval Blocktime and the gas
TxGas required to calculate the execution of the transaction,
and we can calculate TPS by the following formula:

TPS¼ Gaslimit

TxGas × Blocktime
: ð7Þ

In order not to affect the synchronization speed of the
block, the generation interval of the block is set to 5 s and
Gaslimit is 0x8ffffff. We take UploadModel() and SelectAgg()
as functions as examples; the TPS of both can reach 270TPS

and 226TPS, respectively, which can meet the application
requirements of the medical federated learning framework
in this paper.

4.3. Blockchain Consumption. At present, there are two main
forms of blockchain-based federated learning frameworks:
one is based on existing blockchain platforms, such as Ether-
eum, and the other is to design the corresponding blockchain
by itself according to the application scenario and both
approaches have their own advantages and disadvantages.

In order to more intuitively reflect the resource con-
sumption of using blockchain, the Ether platform is chosen
as the experimental platform to evaluate the actual resource
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FIGURE 3: CDOi accuracy in diabetes dataset, breast_cancer dataset, and MNIST dataset: (a) accuracy of diabetes dataset; (b) accuracy of
breast_cancer dataset; (c) accuracy of MNIST.
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consumption through the consumption of gas. The deployment
and invocation of smart contracts need to consume gas, and the
consumption of gas is closely related to the amount of data
processing and the complexity of algorithms, so the consump-
tion of gas can reflect the resource consumption of using smart
contracts. In addition, there is a bottleneck in the storage of
blockchain. Currently, the block size of Bitcoin is generally fixed
at 1MB, and the block size of Ether is generally no more than 2
kB, so the storage of the blockchain is an issue that needs to be
considered.

Table 2 shows the comparison between the scheme of
this paper and the scheme of the literatures [24, 28]. The

literature [24] chooses to use smart contracts to implement
the local model aggregation function, which consumes
1,521,269 gas, while the literature [28] does not use smart
contracts, while the gas consumption of the scheme in this
paper is 979,804, which is lower than the former. In addition,
in terms of time complexity, literature [24] implements com-
plex aggregation function through smart contracts, which
requires multiple rounds of cyclic operations, so the time
complexity is higher; literature [28] combines the aggrega-
tion process with the blockchain consensus process, and the
selection of aggregators is performed through the committee
in the consensus process, so the time complexity is lower,
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while the scheme in this paper only requires simple selection
operations through smart contracts that are more in line with
the current specification of smart contract usage. After using
IPFS for storage, the data to be stored for a single transaction
submitted by a smart contract is no longer the local model

parameters but the hash corresponding to the local model
parameters, with a fixed size of 32 B, which will consume less
than the previous two schemes. Moreover, if the CNN model
is used for federated learning training, hundreds of thou-
sands or even millions of model parameters will be
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FIGURE 5: Comparison of accuracy rates of different solutions: (a) accuracy of diabetes dataset; (b) accuracy of breast_cancer dataset;
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TABLE 1: Encryption/decryption time consumption.

Dataset
Encryption time (ms) Decryption time (ms)

CDO0 CDO1 CDO2 Threshold paillier

Diabetes 2.257 1.981 2.091 66.835
Breast_cancer 1.219 1.284 1.378 44.876
MNIST 1.861× 102 1.766× 102 1.971× 102 6.181× 103
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generated, at which time the blockchain will not be able to
meet the storage requirements of the scheme in literature
[24] while the scheme in this paper does not need to consider
the storage requirements of the blockchain too much, so the
scheme in this paper has better pervasiveness.

4.4. Program Comparison. As shown in Table 3, existing
techniques have used federated learning to address health-
care data privacy, but little work has been done to simulta-
neously use blockchain and smart contracts for federated
learning to improve security. Furthermore, the privacy of
federated learning can continue to be enhanced by using
additional privacy-preserving methods, but the noise added
by differential privacy can affect the usability of the final
model when dealing with medical data, while homomorphic
encryption does not. Overall, the scheme in this paper makes
medical data more secure and private during sharing by
using smart contracts as well as homomorphic encryption.

4.5. Program Evaluation

4.5.1. Proof of Correctness. In this paper, we protect the pri-
vacy of the parameter passing process by using a threshold
Paillier cryptosystem for key generation, where TA constructs a
polynomial to share the key among CDOs using Shamir secret
sharing.We consider theworst-case scenariowhere onlyTCDOs
have uploaded the correct part of decryption in the blockchain.
Let S be the set of T correct partial decryptions and S be a subset
j2 S of M, such that sj ¼ SKCDOi and the partial decryption is
PGMðjÞ ¼ EGM2M!sjmodn2.

By using the Lagrangian interpolation formula, we can
obtain the following:

M!f 0ð Þ ¼M!mβ ¼ ∑
jϵS
μSj f jð Þmodnm: ð8Þ

Thus, we can obtain the following:

EGM4 M!ð Þ2mβ ¼∏
jϵS

EGM4M!sjμSj ¼∏
j2S

PGM jð ÞÀ Á2μSj modn2:

ð9Þ

From the homomorphism of the Paillier cryptosystem, it
follows that

E LM 1ð Þ þ LM 2ð Þ þ…þ LM Mð ÞÀ Á¼ E LM 1ð ÞÀ Á
× E LM 2ð ÞÀ Á

×… × E LM Mð ÞÀ Á
:

ð10Þ

Next, calculate the following:

EGM¼ ∏
M

i¼1
ELM ið Þ ¼ g∑LM ið Þ ∏xið Þnmodn2: ð11Þ

Thus

EGM4 M!ð Þ2mβ ¼ g∑M
i¼1LM ið Þ4 M!ð Þ2mβ × ∏

M

i¼1
xi

� �
n4 M!ð Þ2mβ

modn2:

ð12Þ

Ultimately, we can get the following:

DGM¼ ∑
M

i¼1
LM ið Þ ¼ L ∏

j2S
PGM jð ÞÀ Á2μSj modn2×

 !
4 M!ð Þ2θð Þ−1modn:

ð13Þ

The aggregator can use no less than T correct partial
decryptions to recover the local model parameters of the
aggregation at the time of final decryption.

4.5.2. Proof of Security. In the federated learning framework
proposed in this paper, each medical institution CDO
encrypts the trained local model parameters, uploads them
to IPFS, and later uploads the hash value returned from IPFS
to the blockchain. In this process, all users on the blockchain
can obtain the hash value from the blockchain and obtain the
encrypted local parameter model ELMðiÞ from IPFS based on
the hash value, and since the threshold, Paillier homomor-
phic cryptosystem is semantically secure, and each CDO
does not have a complete key; therefore, CDOs cannot obtain
private data based on ELMðiÞ, so the medical federated

TABLE 2: Blockchain performance comparison.

Paper Smart contract Time complexity Individual transaction data

[24] Aggregation O (nm) Size (modal)
[28] — O (n) Size (modal)
Our scheme Aggregate node selection O (n) Size (hash)

TABLE 3: Comparison of healthcare data-sharing solutions.

Paper Blockchain Smart contract Methods

[8] — — —

[24] Y Y —

[28] Y — Differential privacy
Our scheme Y Y Homomorphic encryption
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learning framework proposed in this paper can protect the
privacy of local model parameters during the federated learn-
ing training process.

Theorem 1. Under the DCRA (decisional composite residu-
osity assumption), the medical federated learning framework
proposed in this paper can protect the privacy of local model
parameters.

Proof. The security of the medical federated learning frame-
work proposed in this paper mainly depends on the thresh-
old Paillier homomorphic cryptosystem used, and if the
system is semantically secure, the medical federated learning
framework proposed in this paper is semantically secure. □

Suppose there exists an adversary A that can break the
semantic security of the threshold Paillier cryptosystem and
thus obtain private data. Given a challenger, it can use A to
break the semantic security of the original Paillier.

Step 1: A Select the server that has compromised T
CDOs and has access to the private data of the compromised
server.

Step 2: The challenger first obtains the public key PK of
the Paillier cryptosystem and randomly selects ða1; b1; θÞ 2
Z∗
n ×Z∗

n ×Z∗
n. Then set g1 ¼ga1 × b1nmodn2. Meanwhile, the

attacker randomly selects s1; s2;…sT from f0;…; bn2=4cg
and sends fn;g1; θ; s1; s2;…sTg to the adversary A.

Step 3: A selects the message M and sends it to the chal-
lenger, who computes the valid encryption c¼ g1

Mxnmodn2

forM. Partial decryption of the corrupted CDO server can be
computed as follows:

ci ¼ c2M!SKCDOimodn2 1 ≤ i ≤ Tð Þ: ð14Þ

Partial decryption of other CDOs can be obtained by
interpolation.

ci ¼ 1þ 2Mθnð ÞμSi;0ð Þ × ∏
j2Sn 0f g

c2SKCDOiμ
S
i; jð Þmodn2: ð15Þ

Step 4: Adversary A selects and sends two messages M0
and M1 to the challenger. Subsequently, the cryptographic
prediction machine selects a random message b and sends a
ciphertext c of Mb to the challenger. the challenger computes
c0 ¼ ca1modn2 and sends it to adversary A.

Step 5: The adversary A continues to follow the stage 1
adaptive query after receiving the challenge ciphertext c0.

Step 6: The adversaryA outputs b0, where b0 is a guess of
the challenger. In summary, the advantage that the chal-
lenger can successfully break the semantic security of the
Paillier cryptosystem is the same as the advantage that the
adversary A has in winning the security contest.

From the literature [40], it is clear that the original Pail-
lier cryptosystem is semantically secure under the assump-
tion of DCRA, so no adversary A satisfies the condition that
the threshold Paillier cryptosystem is also semantically
secure.

Theorem 2. Assuming that the CDOs involved in the feder-
ated learning task are honest but curious and that at most
CDOs up to a threshold T are allowed to conspire, then the
scheme in this paper will guarantee the privacy of the local
model parameters of each CDO.

Proof. Suppose there exists an attack algorithm in which an
aggregator selected by a smart contract can only collude with
at most T − 2 CDOs involved in this training round. ðPK;T;
MÞ as the input to the algorithm can be obtained from the
blockchain by all the CDOs participating in this training
task, and therefore, LMðiÞ can be derived by the aggregator
from the above input parameters and make them public.
However, in the scheme of this paper, the LMðiÞ of each CDO
is encrypted into ciphertext, and the original key can be
recovered and decrypted only after obtaining more than a
threshold T CDOs, which contradicts the assumption.
Therefore, the hypothetical attack algorithm does not exist.
The following example demonstrates the correctness of the
theorem. □

Given two honest medical institutions CDO1 and CDO2,
and a curious medical institution CDO3. CDO1 and CDO2,
which have their local model parameters, ELMð1Þ and,
ELMð2Þ, respectively, assume the existence of an attack algo-
rithm such that CDO3 can computationally derive the local
model parameters of CDO1 and CDO2 by ðPK;T;MÞ. To
verify whether CDO3 can derive the uploaded local model
parameters, this scheme first uploads ELMð1Þ and ELMð2Þ to
the blockchain and obtains them by CDO3, after obtaining
ELMð1Þ and ELMð2Þ CDO3 derives them, after that CDO1 and
CDO2 exchange the ELMð1Þ and ELMð2Þ they own, i.e., CDO1
holds ELMð2Þ and CDO2 holds ELMð1Þ, and finally execute
the secure training scheme in this paper. Based on the security
and privacy of the scheme in this paper, each CDO only owns
part of the decryption key SKCDOi, and there is no CDO with
more than a threshold T for collusion, so CDO3 cannot judge
whether the input values of CDO1 and CDO2 change during
the execution of the scheme in this paper and still considers
that CDO1 holds ELMð1Þ and CDO2 holds ELMð2Þ, but at this
time the input values have changed, which contradicts the
assumption, so there is no such attack algorithm. From this,
it can be concluded that the scheme in this paper can guaran-
tee the privacy of the local model parameters of each CDO
when the CDO collusion does not exceed the threshold T .

In summary, first, this paper improves the privacy of
healthcare data sharing among healthcare organizations by
using cross-silo federated learning, where each CDO inter-
acts with the other with model parameters rather than raw
data. Second, in the attack model of malicious CDOs, mali-
cious CDOs can obtain ciphertexts as well as partially
decrypted ciphertexts directly from the blockchain because
the threshold Paillier cryptosystem used in this paper is
semantically secure, so the attacker must break the crypto-
system to obtain private data. In addition, the original key
can be recovered only when CDOs exceed the threshold T
collude, which cannot happen in reality because each CDO
involved in the training guarantees the security of its data.
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4.5.3. Antiattack Type.

(1) Resistance to inference attacks. In the blockchain-
based federated learning framework, the local model
parameters are uploaded to the blockchain network,
where all nodes in the network can access the model
parameters and reason backward to the original data
based on the model. For such attacks, the scheme in
this paper uses the threshold Paillier cryptosystem to
encrypt the local model parameters and broadcast
them to the blockchain network in the ciphertext
and be recorded in the distributed ledger.

(2) Anti-single-point-of-failure. By storing the local model
parameters through the blockchain, we prevent data
loss during the training process and use a smart con-
tract to select the CDO participating in the training as
the aggregator instead of a fixed central server or task
publisher as the aggregator, thus solving the possible
single point of failure in the model aggregation pro-
cess. If an attacker wants to disrupt the decryption
process, he needs to attack at least M −T − 2 nodes
simultaneously to interrupt the decryption process.

(3) Anticollusion attack. The scheme in this paper adopts
a threshold homomorphic encryption system. When
the number of nodes performing collision is less than
the threshold T , the private keys of the colluding nodes
cannot be recovered by Lagrangian interpolation, and
the colluding nodes cannot obtain the relevant infor-
mation of the local model.

4.5.4. Auditability. This paper provides a complete record of
the flow and use of data in the federated learning training
process through blockchain and IPFS. The open, transparent,
and tamper-evident nature of blockchain is used to ensure
the integrity of data use records, improve the reliability of
federated learning, and can provide data support for the
design of incentives.

4.5.5. Fairness. In the scheme of this paper, since there is no
incentive mechanism involved and no special reward for
completing the work, to make each CDO contribute their
arithmetic power fairly, this paper designs a smart contract
to randomly select aggregation nodes for local model param-
eter aggregation from the CDOs participating in this train-
ing, instead of using a fixed aggregator for aggregation, to
achieve higher fairness and stronger security.

5. Conclusions

To address the problem of secure sharing of medical privacy
data among medical institutions, this paper proposes a med-
ical data privacy protection framework by combining block-
chain and cross-silo federated learning. The framework in
this paper uses cross-silo federated learning to build a col-
laborative training platform for multiple medical institutions
to facilitate the flow of medical data and store intermediate
parameters through blockchain to prevent the loss of inter-
mediate parameters and enhance the trust among medical

institutions. Using smart contracts to select aggregation
nodes instead of fixed servers for aggregation prevents the
single point of failure problem in the federated learning pro-
cess. In addition, the use of threshold homomorphic encryp-
tion solves the inference attacks that may occur during the
training process and addresses the limitation of using single-
key homomorphic encryption in federated learning. The pri-
vacy protection framework of medical data proposed in this
paper breaks the “data silo” between different medical insti-
tutions, solves the privacy and security problems of tradi-
tional federated learning, and realizes the secure sharing of
medical data while protecting user privacy.

Symbols

M: Number of CDOs participating in training
Di: Dataset of the ith CDO
T : The threshold value in the threshold homomorphic

encryption scheme
SK : The private key in the original Paillier homomorphic

encryption scheme
SKCDOi: Threshold homomorphic encryption private key

for the ith CDO
AddCDO: The address of the CDO
AggCDO: The address of the aggregator
PK : Threshold homomorphic encryption public key
IGM: Initial global model parameters
LMðiÞ: Local model parameters of the ith CDO
ELMðiÞ: Cryptographic local model parameters for the ith

CDO
EGM: Cryptographic global model parameters after

aggregation
PGMðiÞ: Global model parameters for the ith CDO partial

decryption
DGM: Global model parameters after decryption.

Data Availability

The medical data used to support the results of this study
can be found at https://datahub.io/machine-learning/diabe
tes and https://archive.ics.uci.edu/ml/datasets/breast+cance
r+wisconsin+(original).
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